Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(16): 166301, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701447

ABSTRACT

We study bulk particle transport in a Fermi-Hubbard model on an infinite-dimensional Bethe lattice, driven by a constant electric field. Previous numerical studies showed that one dimensional analogs of this system exhibit a breakdown of diffusion due to Stark many-body localization at least up to time that scales exponentially with the system size. Here, we consider systems initially in a spin density wave state using a combination of numerically exact and approximate techniques. We show that for sufficiently weak electric fields, the wave's momentum component decays exponentially with time in a way consistent with normal diffusion. By studying different wavelengths, we extract the dynamical exponent and the generalized diffusion coefficient at each field strength. Interestingly, we find a nonmonotonic dependence of the dynamical exponent on the electric field. As the field increases toward a critical value proportional to the Hubbard interaction strength, transport slows down, becoming subdiffusive. At large interaction strengths, however, transport speeds up again with increasing field, exhibiting superdiffusive characteristics when the electric field is comparable to the interaction strength. Eventually, at the large field limit, localization occurs and the current through the system is suppressed.

2.
Nat Commun ; 14(1): 3601, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328458

ABSTRACT

The quantum many-body problem is ultimately a curse of dimensionality: the state of a system with many particles is determined by a function with many dimensions, which rapidly becomes difficult to efficiently store, evaluate and manipulate numerically. On the other hand, modern machine learning models like deep neural networks can express highly correlated functions in extremely large-dimensional spaces, including those describing quantum mechanical problems. We show that if one represents wavefunctions as a stochastically generated set of sample points, the problem of finding ground states can be reduced to one where the most technically challenging step is that of performing regression-a standard supervised learning task. In the stochastic representation the (anti)symmetric property of fermionic/bosonic wavefunction can be used for data augmentation and learned rather than explicitly enforced. We further demonstrate that propagation of an ansatz towards the ground state can then be performed in a more robust and computationally scalable fashion than traditional variational approaches allow.


Subject(s)
Machine Learning , Neural Networks, Computer , Reproduction , Upper Extremity
SELECTION OF CITATIONS
SEARCH DETAIL
...