Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37889838

ABSTRACT

This study attempts to provide a deeper insight into the current genetic status of 12 Bulgarian autochthonous sheep breeds using microsatellite (SSR) markers. A total of 600 individuals from 50 flocks were analyzed using a panel of 13 SSR markers. In total, 228 alleles were found in the studied microsatellite loci. The mean number of alleles, the effective number of alleles, and the polymorphic information content (PIC) values per locus were 17.54, 5.250, and 0.799, respectively. The expected heterozygosity (He) for all breeds ranged from 0.70 to 0.82. The within-population heterozygote deficit (Fis) varied from -0.03 to 0.1, reflecting significant levels for 10 of the 12 breeds. The average genetic differentiation (Fst) was 0.046, revealing a low discrimination between the breeds. The genetic distance, principal coordinate analysis, and the structure analysis showed that two of the studied breeds-Local Stara Zagora/SZ/ and Local Karnobat/MK/-were the most distinct sheep populations. The Bayesian clustering approach suggested poor breed differentiation for the remaining 10 sheep breeds. The results suggest that proper management strategies and specific breeding policies need to be implemented in Bulgaria to avoid the intermixing of breeds and to reduce the erosion of breed purity observed in some breeds.

2.
Plants (Basel) ; 12(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36840172

ABSTRACT

This study reports the development of a set of 20 highly polymorphic genomic SSR markers which can be used for both cultivar identification and genetic diversity studies in several Origanum species, including some of the most popular ones like Greek oregano (Origanum vulgare L. ssp. hirtum), common oregano (O. vulgare L. ssp. vulgare), and sweet marjoram (O. majorana L.). Analysis of the polymorphic information content (PIC) showed an average PIC value of 0.75 with a minimum of 0.41 and a maximum of 0.89, where 17 of the markers showed PIC values above 0.73. Comparative analysis of the genetic diversity of eight natural populations of Greek oregano in Bulgaria showed that six of the genomic SSR markers revealed significantly higher portions of genetic diversity in the populations, compared to 12 EST SSR markers used in our previous study. We also compared the performance of the same six genomic SSR markers with the results for eight SRAP primer combinations, which showed that SRAP markers captured more precisely the genetic structure in natural populations. The developed highly polymorphic genomic SSR markers can be successfully applied to evaluation of the genetic diversity in the genus Origanum, based on the expected and observed heterozygosity in the populations as well as for easy identification of breeding lines and cultivars based on unique SSR fingerprints.

3.
Microorganisms ; 11(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677493

ABSTRACT

The indigenous yeasts associated with the spontaneous fermentation of phenolic-rich rose oil distillation wastewater (RODW) generated after the industrial distillation of rose oil were studied. The ITS-rDNA sequence analysis of the samples collected from RODW fermented at semi-sterile conditions, a waste deposition lagoon and endophytic yeasts isolated from industrially cultivated Rosa damascena suggests that the spontaneous RODW fermentation is caused by yeasts from the genus Cyberlindnera found also as endophytes in the rose flowers. Phylogenetic analysis based on the nucleotide sequences of the translation elongation factor (TEF1α) and 18S- and 26S- rRNA genes further confirmed the taxonomic affiliation of the RODW yeast isolates with the genus Cyberlindnera. The RODW fermentation capacity of a selected set of indigenous yeast isolates was studied and compared with those of common yeast strains. The indigenous yeast isolates demonstrated a superior growth rate, resulting in a nearly double reduction in the phenolic content in the fermented RODW. The indigenous yeasts' fermentation changed the RODW phenolics' composition. The levels of some particular phenolic glycosides decreased through the depletion and fermentation of their sugar moiety. Hence, the relative abundance of the corresponding aglycons and other phenolic compounds increased. The capacity for the biotransformation of RODW phenolics by indigenous yeasts is discussed.

4.
Front Plant Sci ; 12: 679063, 2021.
Article in English | MEDLINE | ID: mdl-34335650

ABSTRACT

We studied the genetic and flower volatile diversity in natural populations of Origanum vulgare subsp. hirtum (Link) Ietsw. in Bulgaria using simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) markers and gas chromatography/mass spectrometry (GC/MS) analysis of flower volatiles from individual plants. Two regions, including the Kresna Gorge and Eastern Rhodopes, typical for the species comprising eight populations and 239 individual plants were included in this study. An analysis with 11 SSR markers and eight SRAP primer combinations showed that SRAP markers were substantially more informative than the SSR markers and were further used for genetic diversity analysis. The results showed low-range to mid-range genetic differentiation between the populations with pairwise fixation index (Fst) values ranging between 0.0047 and 0.11. A total of 10 genetic clusters were identified. An analysis of the flower volatile diversity identified a total of 63 compounds with the vast majority of plants belonging to the carvacrol chemotype and just a single plant to the thymol chemotype. Large deviations were observed for individual compounds within each region as well as within the populations. Hierarchical clustering showed a clear sample grouping based on the two different regions. In addition, an in-depth analysis identified six major and 23 minor metabolite clusters. The overall data set and cluster analysis were further used for the development and testing of a simple and straightforward strategy for the selection of individual plants for the development of a core collection representing the sampled natural populations for this species in Bulgaria. The proposed strategy involves precise genetic clustering of the tested plants followed by the selection of a minimal set from each genetic cluster representing the different metabolite clusters. The selected core set was further compared with a core set extracted by the PowerCore software. A comparison of the genetic and metabolic affiliation of the members of both sets showed that the reported approach selected representatives from each genetic cluster and minor metabolic cluster, whereas some metabolic clusters were unrepresented in the PowerCore set. The feasibility and efficiency of applying the pointed strategy for the development of a core collection representing both the genetic and metabolite diversity of natural populations in aromatic and medicinal plants toward subsequent steps of selection and breeding are discussed.

5.
Plant Physiol ; 173(2): 970-983, 2017 02.
Article in English | MEDLINE | ID: mdl-27923988

ABSTRACT

The cellulose synthase complex (CSC) exhibits a 6-fold symmetry and is known as a "rosette." Each CSC is believed to contain between 18 and 24 CESA proteins that each synthesize an individual glucan chain. These chains form the microfibrils that confer the remarkable structural properties of cellulose. At least three different classes of CESA proteins are essential to form the CSC However, while organization of the CSC determines microfibril structure, how individual CESA proteins are organized within the CSC remains unclear. Parts of the plant CESA proteins map sufficiently well onto the bacterial CESA (BcsA) structure, indicating that they are likely to share a common catalytic mechanism. However, plant CESA proteins are much larger than the bacterial BcsA protein, prompting the suggestion that these plant-specific regions are important for interactions between CESA proteins and for conferring CESA class specificity. In this study, we have undertaken a comprehensive analysis of well-defined regions of secondary cell wall CESA proteins, with the aim of defining what distinguishes different CESA proteins and hence what determines the specificity of each CESA class. Our results demonstrate that CESA class specificity extends throughout the protein and not just in the highly variable regions. Furthermore, we find that different CESA isoforms vary greatly in their levels of site specificity and this is likely to be determined by the constraints imposed by their position within the CSC rather than their primary structure.


Subject(s)
Arabidopsis/enzymology , Glucosyltransferases/metabolism , Amino Acid Sequence , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Cellulose/metabolism , Computational Biology , Gene Knockout Techniques , Genes, Plant , Genetic Complementation Test , Glucosyltransferases/chemistry , Mutation/genetics , Phenotype , Plants, Genetically Modified , Substrate Specificity , Transformation, Genetic
6.
Science ; 353(6295): 166-9, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27387950

ABSTRACT

Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Membrane/enzymology , Glucosyltransferases/metabolism , Acylation , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Catalytic Domain , Cysteine/chemistry , Cysteine/genetics , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Golgi Apparatus/enzymology , Hydrophobic and Hydrophilic Interactions , Microfibrils/metabolism , Mutation
7.
Planta Med ; 82(11-12): 1000-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27093251

ABSTRACT

Water steam distillation of rose flowers separates the essential oil from the polyphenol-containing rose oil distillation wastewater. Recently, a strategy was developed to separate rose oil distillation wastewater into a polyphenol depleted water fraction and a polyphenol-enriched fraction [RF20-(SP-207)]. The objective of the present study was to investigate RF20-(SP-207) and fraction F(IV), augmented in quercetin and ellagic acid, for possible antiproliferative effects in immortalized human keratinocytes (HaCaT) since rose petals are known to contain compounds with potential antiproliferative activity.RF20-(SP-207) revealed dose-dependent antiproliferative activity (IC50 of 9.78 µg/mL). In a nontoxic concentration of 10 µg/mL, this effect was stronger than that of the two positive controls LY294002 (10 µM, PI3 K-inhibitor, 30 % inhibition) and NVP-BEZ235 (100 nM, dual PI3 K/mTOR inhibitor, 30 % inhibition) and clearly exceeded the antiproliferative action of quercetin (50 µM, 25 % inhibition) and ellagic acid (1 µM, 15 % inhibition). Time-lapse microscopy detected a significant impairment of cell migration of RF20-(SP-207) and F(IV). At concentrations of 10 µg/mL of both, extract and fraction, cell migration was strongly suppressed (51 % and 28 % gap closure, respectively, compared to 95 % gap closure 24 hours after control treatment). The suppression of cell migration was comparable to the positive controls LY294002, NVP-BEZ235, and quercetin. Furthermore, basal and TNF-α-stimulated VEGF-secretion was significantly reduced by RF20-(SP-207) and F(IV) at 10 µg/mL (44 % vs. untreated control).In conclusion, RF20-(SP-207) showed promising antiproliferative and antimigratory effects and could be developed as a supportive, therapy against hyperproliferation-involved skin diseases.


Subject(s)
Cell Movement/drug effects , Cell Proliferation/drug effects , Industrial Waste , Keratinocytes/drug effects , Rosa/chemistry , Vascular Endothelial Growth Factor A/metabolism , Wastewater/chemistry , Cell Line, Transformed , Distillation , Humans , Keratinocytes/metabolism , Phenols/chemistry , Phenols/pharmacology , Plant Oils/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology
8.
Fitoterapia ; 108: 13-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26592852

ABSTRACT

During the water steam distillation process of rose flowers, the non-volatile phenolic compounds remain in the waste. We recently developed a strategy to separate rose oil distillation water (RODW) into a polyphenol depleted water fraction and a polyphenol enriched fraction (RF20-SP207). Bioassay-guided investigation of RF20-SP207 led to the isolation of quercetin, kaempferol and ellagic acid. Their structures were elucidated by spectroscopic analysis as well as by comparison with literature data. Tyrosinase inhibition studies were performed with RF20-SP207, fractions I-IV, and the isolated compounds of the most active fraction. RF20-SP207 strongly inhibited the enzyme with an IC50 of 0.41 µg/mL. From the tested fractions only fraction IV (IC50=5.81 µg/mL) exhibited strong anti-tyrosinase activities. Quercetin, kaempferol and ellagic acid were identified in fraction IV and inhibited mushroom tyrosinase with IC50 values of 4.2 µM, 5.5 µM and 5.2 µM, respectively, which is approximately 10 times more potent than that of the positive control kojic acid (56.1µM). The inhibition kinetics, analyzed by Lineweaver-Burk plots, indicated that RF20-SP207 and fraction IV are uncompetitive inhibitors of tyrosinase when l-tyrosine is used as a substrate. A mixed inhibition was determined for ellagic acid, and a competitive inhibition for quercetin and kaempferol. In conclusion, the recovered polyphenol fraction RF20-SP207 from RODW was found to be a potent tyrosinase inhibitor. This value-added product could be used as an active ingredient in cosmetic products related to hyperpigmentation.


Subject(s)
Monophenol Monooxygenase/antagonists & inhibitors , Polyphenols/chemistry , Rosa/chemistry , Wastewater/chemistry , Agaricales/enzymology , Distillation , Ellagic Acid/chemistry , Flowers/chemistry , Kaempferols/chemistry , Quercetin/chemistry
9.
Int. microbiol ; 18(4): 217-223, dic. 2015. graf, ilus
Article in English | IBECS | ID: ibc-153125

ABSTRACT

Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups (AU)


No disponible


Subject(s)
Biodiversity , Archaea/classification , Bacteria/classification , Phylogeny , Hot Springs/microbiology , Bulgaria , RNA, Ribosomal, 16S/analysis , Cytogenetic Analysis/methods
10.
Int Microbiol ; 18(4): 217-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27611674

ABSTRACT

Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)].


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Bacterial Proteins/genetics , Biodiversity , Glycoside Hydrolases/genetics , Hot Springs/microbiology , RNA, Ribosomal, 16S/genetics , Archaea/classification , Archaea/enzymology , Archaea/genetics , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/metabolism , Bulgaria , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Glycoside Hydrolases/metabolism , Phylogeny
11.
Planta Med ; 80(17): 1657-64, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25295672

ABSTRACT

The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process.


Subject(s)
Polyphenols/isolation & purification , Rosa/chemistry , Adsorption , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Distillation , Pilot Projects , Plant Oils/chemistry , Polyphenols/chemistry , Wastewater/chemistry
12.
Plant J ; 66(3): 401-13, 2011 May.
Article in English | MEDLINE | ID: mdl-21251108

ABSTRACT

There are 10 genes in the Arabidopsis genome that contain a domain described in the Pfam database as domain of unknown function 579 (DUF579). Although DUF579 is widely distributed in eukaryotic species, there is no direct experimental evidence to assign a function to it. Five of the 10 Arabidopsis DUF579 family members are co-expressed with marker genes for secondary cell wall formation. Plants in which two closely related members of the DUF579 family have been disrupted by T-DNA insertions contain less xylose in the secondary cell wall as a result of decreased xylan content, and exhibit mildly distorted xylem vessels. Consequently we have named these genes IRREGULAR XYLEM 15 (IRX15) and IRX15L. These mutant plants exhibit many features of previously described xylan synthesis mutants, such as the replacement of glucuronic acid side chains with methylglucuronic acid side chains. By contrast, immunostaining of xylan and transmission electron microscopy (TEM) reveals that the walls of these irx15 irx15l double mutants are disorganized, compared with the wild type or other previously described xylan mutants, and exhibit dramatic increases in the quantity of sugar released in cell wall digestibility assays. Furthermore, localization studies using fluorescent fusion proteins label both the Golgi and also an unknown intracellular compartment. These data are consistent with irx15 and irx15l defining a new class of genes involved in xylan biosynthesis. How these genes function during xylan biosynthesis and deposition is discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cell Wall/chemistry , Xylans/biosynthesis , Xylem/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Wall/ultrastructure , Gene Expression Regulation, Plant , Golgi Apparatus/metabolism , Mutagenesis, Insertional , Mutation , Pentosyltransferases/metabolism , Phylogeny , Xylem/ultrastructure , Xylose/metabolism , UDP Xylose-Protein Xylosyltransferase
13.
J Basic Microbiol ; 51(2): 163-72, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21077120

ABSTRACT

The phylogeny of the latest recognized domain, Archaea, is still complicated and it is largely based on environmental sequences. A culture independent molecular phylogenetic analysis revealed high Archaea diversity in a terrestrial hot spring, village Varvara, Bulgaria. A total of 35 archaeal operational taxonomic units (OTUs) belonging to three of the classified five Archaea phyla were identified. Most of the sequences were affiliated with the phylum Crenarchaeota (23), grouped in four branches. The rest of the sequences showed highest similarity to the unidentified archaeal clones (9), Euryarchaeota (2), and "Korarchaeota " (1). Eight (23%) of the sequenced 16S rDNAs didn't have known close relatives and represented new and diverse OTUs, four of them forming a new archaeal subgroup without close described sequences or culturable relatives. A sequence affiliated with "Korarchaeota " showed low similarity (90%) to the closest neighbor and both sequences formed unique branch in this phylum. Consequently, the constructed archaeal libraries are characterized by (1) high proportion of OTUs representing uncultivated archaeal phylogroups, (2) the abundance of novel phylotype sequences, (3) the presence of high proportions of Crenarchaeota phylotypes unrelated to cultivated organisms and (4) the presence of a sequence only distantly related to "Korarchaeota " phylum.


Subject(s)
Archaea/isolation & purification , Hot Springs/microbiology , Water Microbiology , Amino Acid Sequence , Archaea/classification , Archaea/genetics , Base Sequence , Bulgaria , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genetic Variation , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Sequence Alignment
14.
Plant Methods ; 5: 14, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19863796

ABSTRACT

BACKGROUND: The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. RESULTS: Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. CONCLUSION: The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

15.
J Biol Chem ; 284(6): 3833-41, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19056734

ABSTRACT

Cellulose is the most abundant biopolymer in nature; however, questions relating to the biochemistry of its synthesis including the structure of the cellulose synthase complex (CSC) can only be answered by the purification of a fully functional complex. Despite its importance, this goal remains elusive. The work described here utilizes epitope tagging of cellulose synthase A (CESA) proteins that are known components of the CSC. To avoid problems associated with preferential purification of CESA monomers, we developed a strategy based on dual epitope tagging of the CESA7 protein to select for CESA multimers. With this approach, we used a two-step purification that preferentially selected for larger CESA oligomers. These preparations consisted solely of the three known secondary cell wall CESA proteins CESA4, CESA7, and CESA8. No additional CESA isoforms or other proteins were identified. The data are consistent with a model in which CESA protein homodimerization occurs prior to formation of larger CESA oligomers. This suggests that the three different CESA proteins undergo dimerization independently, but the presence of all three subunits is required for higher order oligomerization. Analysis of purified CESA complex and crude extracts suggests that disulfide bonds and noncovalent interactions contribute to the stability of the CESA subunit interactions. These results demonstrate that this approach will provide an excellent framework for future detailed analysis of the CSC.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Wall/enzymology , Glucosyltransferases/metabolism , Models, Molecular , Multienzyme Complexes/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/isolation & purification , Dimerization , Disulfides/chemistry , Disulfides/metabolism , Enzyme Stability/physiology , Glucosyltransferases/chemistry , Glucosyltransferases/isolation & purification , Multienzyme Complexes/chemistry , Multienzyme Complexes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...