Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Lasers Med Sci ; 12: e41, 2021.
Article in English | MEDLINE | ID: mdl-34733764

ABSTRACT

Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.

2.
Mol Pharm ; 18(8): 3171-3180, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34279974

ABSTRACT

Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.


Subject(s)
Annexin A1/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Bandages , Diabetes Mellitus, Experimental/complications , Follistatin-Related Proteins/administration & dosage , Peptides/administration & dosage , Staphylococcal Infections/complications , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Surgical Wound/complications , Surgical Wound/drug therapy , Wound Healing/drug effects , Wound Infection/complications , Wound Infection/drug therapy , 3T3 Cells , Animals , Biocompatible Materials/administration & dosage , Biopolymers/chemistry , Cell Survival/drug effects , Diabetes Mellitus, Experimental/chemically induced , HaCaT Cells , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Male , Materials Testing/methods , Mice , Nanofibers/chemistry , Rats , Rats, Wistar , Staphylococcal Infections/microbiology , Treatment Outcome , Wound Infection/microbiology
3.
Biochem Biophys Res Commun ; 530(1): 173-180, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828282

ABSTRACT

We investigated the impact of human demineralized bone matrix (hDBM) plus adipose-derived stem cells (hADS) plus photobiomodulation (PBM) on a critical-sized femoral defect (CSFD) in ovariectomy induced osteoporosis in rats. There were 6 groups as follows. In group 1 (control, C), only CSFDs were created. Groups 2-6 were implanted with DBM into the CSFD (DBM-CSFD). In group 2 (S), only DBM was transplanted into the CSFD. In group 3 (S + PBM), the DBM-CSFDs were treated with PBM. In group 4, the DBM-CSFDs were treated with alendronate (S + ALN). In group 5, ADSs were seeded into DBM-CSFD (S + ADS). In group 6, ADSs were seeded into DBM-CSFD and the CSFDs were treated with PBM (S + PBM + ADS). At week eight (catabolic phase of bone repair), the S + ALN, S + PBM + ADS, S + PBM, and S + ADS groups all had significantly increased bone strength than the S group (ANOVA, p = 0.000). The S + PBM, S + PBM + ADS, and S + ADS groups had significantly increased Hounsfield unit than the S group (ANOVA, p = 0.000). ALN, ADS, and PBM significantly increased healed bone strength in an experimental model of DBM-treated CSFD in the catabolic phase of bone healing in osteoporotic rats. However, ALN alone and PBM plus ADS were superior to the other protocols.


Subject(s)
Bone Matrix/transplantation , Low-Level Light Therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoporosis/therapy , Animals , Cell Line , Disease Models, Animal , Female , Femur/injuries , Femur/pathology , Humans , Mesenchymal Stem Cells/cytology , Osteoporosis/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...