Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 225: 167-174, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28193411

ABSTRACT

The aim of this study was to develop a molecular technique to determine the level of human originated DNA contamination in unhygienic food products. In the study, four model foods were prepared under both hygienic (H) and non-hygienic (NH) conditions and the human originated microbial loads of these products were determined. DNA was extracted from the model foods and human buccal samples by GIDAGEN Multi-fast DNA isolation kit. A primer specific region of human mitochondrial D-Loop was designed. The level of human DNA contamination in the model foods was determined by real-time PCR. The sensitivity of the technique developed here was 0.00001ng DNA/PCR. In addition, the applicability of the traceable molecular hygiene control method (TMHCM) was tested in 60 food samples from the market. The results of this study demonstrate that DNA based TMHCM can be used to predict to what extent foods meet the human oriented hygienic conditions.


Subject(s)
DNA/chemistry , Food Contamination/analysis , Food Microbiology/methods , Food Safety/methods , Polymerase Chain Reaction/methods , Humans
2.
Trop Anim Health Prod ; 44(5): 1049-55, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22189816

ABSTRACT

The aim of this study was to investigate effects of kefir, a traditional source of probiotic, on coccidial oocysts excretion and on the performance of dairy goat kids following weaning. Twin kids were randomly allocated to one of two groups at weaning. Kids of the first group received 20 ml of kefir daily for 6 weeks (KEF), while kids in the control group were given a placebo (CON). Individual faecal samples were regularly (n = 18 per kid) taken to quantify the number of coccidial oocysts per gram of faeces (OpG). There were no differences between the groups in terms of body weight development (P > 0.05) and feed consumption. Kids of both groups were not able to consume enough feed to meet their nutrient requirements during the first 3 weeks following weaning. KEF had a lower frequency of OpG positive samples than CON (P = 0.043). Kefir did not affect the maximum oocyst excretion and age of the kids at the highest oocyst excretion (P > 0.05). KEF shed numerically 35% lower coccidial oocysts than the controls, which corresponded to a statistical tendency (P = 0.074) in lowering Log-OpG in comparison to CON. While KEF had a lower frequency of OpG positive samples and tended to shed lower OPG by around one-third, the frequency of diarrhea, level of highest oocyst excretion, and performance of the kids remained unaffected. Therefore, it is concluded that overall effects of kefir do not have a significant impact on sub-clinical infection and performance in weaned kids under relatively high-hygienic farming conditions.


Subject(s)
Coccidiosis/veterinary , Cultured Milk Products/chemistry , Dairying , Goat Diseases/drug therapy , Goats/growth & development , Oocysts/drug effects , Probiotics/administration & dosage , Animals , Coccidiosis/drug therapy , Coccidiosis/parasitology , Eimeria/isolation & purification , Feces/parasitology , Female , Goat Diseases/parasitology , Male , Oocysts/physiology , Parasite Egg Count/veterinary , Random Allocation , Weaning
3.
Br J Nutr ; 92(5): 777-83, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15533266

ABSTRACT

The intestinal Na-dependent D-glucose co-transporter (SGLT)-1 in sheep is under dietary regulation by luminal substrates. The aim of the present study was to find out whether the SGLT-1 in the forestomach of sheep is also regulated by sugars. Furthermore, the location of a possible glucosensor (luminal v. intracellular v. basolateral) was to be elucidated. Ruminal epithelia of sheep (Ovis aries, Merino breed) were pre-incubated in Ussing chambers with various substrates on the mucosal (i.e. luminal) or serosal (i.e. blood) side. This pre-incubation period was followed by a second pre-incubation period without the tested substrates (washout period). Thereafter, apical D-glucose uptake by ruminal epithelial cells was determined with 200 mumol D-[(14)C]glucose/l in the absence or co-presence of the SGLT-1 inhibitor, phlorizin. Pre-incubation with D-glucose on the mucosal side had no significant effect on apical D-glucose uptake (P>0.05). In contrast, pre-incubation with D-glucose, D-mannose, 3-O-methyl-d-glucose or sucrose on the serosal side significantly increased D-glucose uptake compared with mannitol-treated controls (P<0.05). Serosal pre-incubation with cellobiose or D-xylose had no effect. The stimulation of d-glucose uptake by serosal D-glucose pre-incubation was concentration dependent, with maximal stimulation at about 10 mmol/l. We conclude that the ruminal SGLT-1 can be up-regulated in a concentration-dependent manner by blood-borne D-glucose via an extracellular sugar-sensing mechanism.


Subject(s)
Hexoses/metabolism , Membrane Glycoproteins/metabolism , Monosaccharide Transport Proteins/metabolism , Rumen/metabolism , Sodium/metabolism , Animals , Blood Glucose/metabolism , Epithelial Cells/metabolism , Female , Glucose/metabolism , Intestinal Mucosa/metabolism , Sheep , Sodium-Glucose Transporter 1
4.
FEMS Microbiol Lett ; 212(2): 243-7, 2002 Jul 02.
Article in English | MEDLINE | ID: mdl-12113941

ABSTRACT

Anaerobic fungi are an important component of the cellulolytic ruminal microflora. Ammonia alone as N source supports growth, but amino acid mixtures are stimulatory. In order to evaluate the extent of de novo synthesis of individual amino acids in Piromyces communis and Neocallimastix frontalis, isotope enrichment in amino acids was determined during growth on (15)NH(4)Cl in different media. Most cell N (0.78 and 0.63 for P. communis and N. frontalis, respectively) and amino acid N (0.73 and 0.59) continued to be formed de novo from ammonia when 1 g l(-1) trypticase was added to the medium; this concentration approximates the peak concentration of peptides in the rumen after feeding. Higher peptide/amino acid concentrations decreased de novo synthesis. Lysine was exceptional, in that its synthesis decreased much more than other amino acids when Trypticase or amino acids were added to the medium, suggesting that lysine synthesis might limit fungal growth in the rumen.


Subject(s)
Amino Acids/biosynthesis , Neocallimastix/metabolism , Piromyces/metabolism , Rumen/microbiology , Ammonia/metabolism , Anaerobiosis , Animals , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...