Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(20): 14392-14424, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38699688

ABSTRACT

The use of pharmaceuticals, dyes, and pesticides in modern healthcare and agriculture, along with expanding industrialization, heavily contaminates aquatic environments. This leads to severe carcinogenic implications and critical health issues in living organisms. The photocatalytic methods provide an eco-friendly solution to mitigate the energy crisis and environmental pollution. Sunlight-driven photocatalytic wastewater treatment contributes to hydrogen production and valuable product generation. The removal of contaminants from wastewater through photocatalysis is a highly efficient method for enhancing the ecosystem and plays a crucial role in the dual-functional photocatalysis process. In this review, a wide range of catalysts are discussed, including heterojunction photocatalysts and various hybrid semiconductor photocatalysts like metal oxides, semiconductor adsorbents, and dual semiconductor photocatalysts, which are crucial in this dual function of degradation and green fuel production. The effects of micropollutants in the ecosystem, degradation efficacy of multi-component photocatalysts such as single-component, two-component, three-component, and four-component photocatalysts were discussed. Dual-functional photocatalysis stands out as an energy-efficient and cost-effective method. We have explored the challenges and difficulties associated with dual-functional photocatalysts. Multicomponent photocatalysts demonstrate superior efficiency in degrading pollutants and producing hydrogen compared to their single-component counterparts. Dual-functional photocatalysts, incorporating TiO2, g-C3N4, CeO2, metal organic frameworks (MOFs), layered double hydroxides (LDHs), and carbon quantum dots (CQDs)-based composites, exhibit remarkable performance. The future of synergistic photocatalysis envisions large-scale production facilitate integrating advanced 2D and 3D semiconductor photocatalysts, presenting a promising avenue for sustainable and efficient pollutant degradation and hydrogen production from environmental remediation technologies.

2.
Article in English | MEDLINE | ID: mdl-38684614

ABSTRACT

In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g-1 obtained at 1 A g-1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.

3.
RSC Adv ; 13(51): 36223-36241, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090077

ABSTRACT

The widespread use of plastics, popular for their versatility and cost-efficiency in mass production, has led to their essential role in modern society. Their remarkable attributes, such as flexibility, mechanical strength, lightweight, and affordability, have further strengthened their importance. However, the emergence of microplastics (MPs), minute plastic particles, has raised environmental concerns. Over the last decade, numerous studies have uncovered MPs of varying sizes in diverse environments. They primarily originate from textile fibres and cosmetic products, with large plastic items undergoing degradation and contributing as secondary sources. The bioaccumulation of MPs, with potential ingestion by humans through the food chain, underscores their significance as environmental contaminants. Therefore, continuous monitoring of environmental and food samples is imperative. A range of spectroscopic techniques, including vibrational spectroscopy, Raman spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, hyperspectral imaging, and nuclear magnetic resonance (NMR) spectroscopy, facilitates the detection of MPs. This review offers a comprehensive overview of the analytical methods employed for sample collection, characterization, and analysis of MPs. It also emphasizes the crucial criteria for selecting practical and standardized techniques for the detection of MPs. Despite advancements, challenges persist in this field, and this review suggests potential strategies to address these limitations. The development of effective protocols for the accurate identification and quantification of MPs in real-world samples is of paramount importance. This review further highlights the accumulation of microplastics in various edible species, such as crabs, pelagic fish, finfish, shellfish, American oysters, and mussels, shedding light on the extreme implications of MPs on our food chain.

4.
Sensors (Basel) ; 23(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37837031

ABSTRACT

Alcohol is a dangerous substance causing global mortality and health issues, including mental health problems. Regular alcohol consumption can lead to depression, anxiety, cognitive decline, and increased risk of alcohol-related disorders. Thus, monitoring ethanol levels in biological samples could contribute to maintaining good health. Herein, we developed an electrochemical sensor for the determination of ethanol in human salivary samples. Initially, the tetra-chloroauric acid (HAuCl4) was chemically reduced using sparfloxacin (Sp) which also served as a stabilizing agent for the gold nanoparticles (AuNPs). As-prepared Sp-AuNPs were comprehensively characterized and confirmed by UV-visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and elemental mapping analysis. The average particle size (~25 nm) and surface charge (negative) of Sp-AuNPs were determined by using dynamic light scattering (DLS) and Zeta potential measurements. An activated screen-printed carbon electrode (A-SPE) was modified using Sp-AuNPs dispersion, which exhibited greater electrocatalytic activity and sensitivity for ethanol (EtOH) oxidation in 0.1 M sodium hydroxide (NaOH) as studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). DPV showed a linear response for EtOH from 25 µM to 350 µM with the lowest limit of detection (LOD) of 0.55 µM. Reproducibility and repeatability studies revealed that the Sp-AuNPs/A-SPEs were highly stable and very sensitive to EtOH detection. Additionally, the successful electrochemical determination of EtOH in a saliva sample was carried out. The recovery rate of EtOH spiked in the saliva sample was found to be 99.6%. Thus, the incorporation of Sp-AuNPs within sensors could provide new possibilities in the development of ethanol sensors with an improved level of precision and accuracy.


Subject(s)
Carbon , Metal Nanoparticles , Humans , Carbon/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Ethanol , Reproducibility of Results , Electrochemical Techniques/methods , Electrodes
5.
Environ Res ; 238(Pt 2): 117193, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37758116

ABSTRACT

Carbaryl and carbofuran are the carbamate pesticides which have been widely used worldwide to control insects in crops and house. If the pesticides entered in to the food products and drinking water, they could cause serious health effects in humans. Therefore, the development of a rapid, simple, sensitive and selective analytical device for on-site detection of carbamates is crucial to evaluate food and environmental samples. Recently, semiconducting single-walled carbon nanotube-based field effect transistors (s-SWCNT/FETs) have shown several advantages such as high carrier mobility, good on/off ratio, quasi ballistic electron transport, label-free detection and real-time response. Herein, cobalt ferrite (CFO) nanoparticles decorated s-SWCNTs have been prepared and used to bridge the source and drain electrodes. As-prepared CFO/s-SWCNT/FET had been used for the non-enzymatic detection of carbaryl and carbofuran. When used as a sensing platform, the CFO/s-SWCNT hybrid film exhibited high sensitivity, and selectivity with a wide linear range of detection from 10 to 100 fMand the lowest limit of detections for carbaryl (0.11 fM) and carbofuran (0.07 fM) were estimated. This sensor was also used to detect carbaryl in tomato and cabbage samples, which confirmed its practical acceptance. Such performance may be attributed to the oxidation of carbamates by potent catalytic activity of CFO, which led to the changes in the charge transfer reaction on the s-SWCNTs/FET conduction channel. This work presents a novel CFO/s-SWCNT based sensing system which could be used to quantify pesticide residues in food samples.


Subject(s)
Carbofuran , Nanotubes, Carbon , Pesticides , Humans , Carbaryl , Nanotubes, Carbon/chemistry , Carbamates
6.
Biosensors (Basel) ; 13(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37754068

ABSTRACT

Universal platforms to analyze biomolecules using sensor devices can address critical diagnostic challenges. Sensor devices like electrical-based field-effect transistors play an essential role in sensing biomolecules by charge probing. Graphene-based devices are more suitable for these applications. It has been previously reported that Graphene Field-Effect Transistor (GFET) devices detect DNA hybridization, pH sensors, and protein molecules. Graphene became a promising material for electrical-based field-effect transistor devices in sensing biomarkers, including biomolecules and proteins. In the last decade, FET devices have detected biomolecules such as DNA molecules, pH, glucose, and protein. These studies have suggested that the reference electrode is placed externally and measures the transfer characteristics. However, the external probing method damages the samples, requiring safety measurements and a substantial amount of time. To control this problem, the graphene field-effect transistor (GFET) device is fabricated with an inbuilt gate that acts as a reference electrode to measure the biomolecules. Herein, the monolayer graphene is exfoliated, and the GFET is designed with an in-built gate to detect the Interleukin-6 (IL-6) protein. IL-6 is a multifunctional cytokine which plays a significant role in immune regulation and metabolism. Additionally, IL-6 subsidizes a variability of disease states, including many types of cancer development, and metastasis, progression, and increased levels of IL-6 are associated with a higher risk of cancer and can also serve as a prognostic marker for cancer. Here, the protein is desiccated on the GFET device and measured, and Dirac point shifting in the transfer characteristics systematically evaluates the device's performance. Our work yielded a conductive and electrical response with the IL-6 protein. This graphene-based transducer with an inbuilt gate gives a promising platform to enable low-cost, compact, facile, real-time, and sensitive amperometric sensors to detect IL-6. Targeting this pathway may help develop treatments for several other symptoms, such as neuromyelitis optica, uveitis, and, more recently, COVID-19 pneumonia.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Neoplasms , Humans , Interleukin-6 , Graphite/chemistry , Biosensing Techniques/methods , Transistors, Electronic , DNA
7.
Biosensors (Basel) ; 13(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37754073

ABSTRACT

Nicotine is the one of the major addictive substances; the overdose of nicotine (NIC) consumption causes increasing heart rate, blood pressure, stroke, lung cancer, and respiratory illnesses. In this study, we have developed a precise and sensitive electrochemical sensor for nicotine detection in saliva samples. It was built on a glassy carbon electrode (GCE) modified with graphene (Gr), iron (III) phthalocyanine-4,4',4″,4'''-tetrasulfonic acid (Fe(III)Pc), and gold nanoparticles (AuNPs/Fe(III)Pc/Gr/GCE). The AuNPs/Fe(III)Pc/Gr nanocomposite was prepared and characterized by using FE-SEM, EDX, and E-mapping techniques to confirm the composite formation as well as the even distribution of elements. Furthermore, the newly prepared AuNPs/Fe(III)Pc/Gr/GCE-nanocomposite-based sensor was used to detect the nicotine in phosphate-buffered solution (0.1 M PBS, pH 7.4). The AuNPs/Fe(III)Pc/Gr/GCE-based sensor offered a linear response against NIC from 0.5 to 27 µM with a limit of detection (LOD) of 17 nM using the amperometry (i-t curve) technique. This electrochemical sensor demonstrated astounding selectivity and sensitivity during NIC detection in the presence of common interfering molecules in 0.1 M PBS. Moreover, the effect of pH on NIC electro-oxidation was studied, which indicated that PBS with pH 7.4 was the best medium for NIC determination. Finally, the AuNPs/Fe(III)Pc/Gr/GCE sensor was used to accurately determine NIC concentration in human saliva samples, and the recovery percentages were also calculated.


Subject(s)
Graphite , Metal Nanoparticles , Humans , Graphite/chemistry , Gold/chemistry , Nicotine , Iron , Metal Nanoparticles/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrodes
8.
Microsc Res Tech ; 86(9): 1154-1168, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421302

ABSTRACT

Silver nanoparticles (AgNPs) have emerged as highly effective antimicrobial agents against multidrug-resistant (MDR) pathogens. This study aims to employ green chemistry principles for AgNP synthesis involving phytochemical-rich extract from Glycyrrhiza glabra roots. The approach highlights using renewable feedstocks, safer chemicals, minimum byproducts, and process scale-up. The synthesis of AgNPs was assessed using a surface plasmon resonance band at 420 nm, and structural properties were characterized using TEM, x-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. This method enables the production of high-yield dispersions of AgNPs with desired physicochemical characteristics, including dark yellow solution, size (~20 nm), spherical to an oval shape, crystal structure, and stable colloidal properties. The antimicrobial activity of AgNPs was investigated against the MDR bacteria strains of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). This work reveals that the antimicrobial activity of AgNPs can be influenced by bacterial cell wall components. The results demonstrate the strong interaction between AgNPs and E. coli, exhibiting a dose-dependent antibacterial response. The green approach facilitated the safer, facile, and rapid synthesis of colloidal dispersions of AgNPs, providing a sustainable and promising alternative to conventional chemical and physical methods. Furthermore, the effect of AgNPs on various growth parameters, including seed germination, root and shoot elongation, and dry weight biomass, was assessed for mung bean seedlings. The results revealed phytostimulatory effects, suggesting the promising prospects of AgNPs in the nano-priming of agronomic seeds. RESEARCH HIGHLIGHTS: Glycyrrhiza glabra root extract enabled rapid, high-yield, and eco-friendly synthesis of silver nanoparticles (AgNPs). Spectrophotometric analysis examined the optical properties, scalability, and stability of AgNPs. Transmission electron microscopy provided insights into the size, shape, and dispersity of AgNPs. Scanning electron microscopy revealed significant damage to gram-negative bacterial cell morphology and membrane integrity. AgNPs were found to enhance seed germination, seedling growth, and biomass yield of Vigna radiata.


Subject(s)
Metal Nanoparticles , Silver , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
9.
Materials (Basel) ; 16(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37374654

ABSTRACT

Energy storage and conversion are critical components of modern energy systems, enabling the integration of renewable energy sources and the optimization of energy use. These technologies play a key role in reducing greenhouse gas emissions and promoting sustainable development. Supercapacitors play a vital role in the development of energy storage systems due to their high power density, long life cycles, high stability, low manufacturing cost, fast charging-discharging capability and eco-friendly. Molybdenum disulfide (MoS2) has emerged as a promising material for supercapacitor electrodes due to its high surface area, excellent electrical conductivity, and good stability. Its unique layered structure also allows for efficient ion transport and storage, making it a potential candidate for high-performance energy storage devices. Additionally, research efforts have focused on improving synthesis methods and developing novel device architectures to enhance the performance of MoS2-based devices. This review article on MoS2 and MoS2-based nanocomposites provides a comprehensive overview of the recent advancements in the synthesis, properties, and applications of MoS2 and its nanocomposites in the field of supercapacitors. This article also highlights the challenges and future directions in this rapidly growing field.

10.
Biosensors (Basel) ; 13(6)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37367028

ABSTRACT

Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.


Subject(s)
Glaucoma , Intraocular Pressure , Humans , Glaucoma/diagnosis , Glaucoma/drug therapy , Tonometry, Ocular/methods , Nanotechnology , Prostheses and Implants
11.
Membranes (Basel) ; 13(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367794

ABSTRACT

Hydrogen energy is converted to electricity through fuel cells, aided by nanostructured materials. Fuel cell technology is a promising method for utilizing energy sources, ensuring sustainability, and protecting the environment. However, it still faces drawbacks such as high cost, operability, and durability issues. Nanomaterials can address these drawbacks by enhancing catalysts, electrodes, and fuel cell membranes, which play a crucial role in separating hydrogen into protons and electrons. Proton exchange membrane fuel cells (PEMFCs) have gained significant attention in scientific research. The primary objectives are to reduce greenhouse gas emissions, particularly in the automotive industry, and develop cost-effective methods and materials to enhance PEMFC efficiency. We provide a typical yet inclusive review of various types of proton-conducting membranes. In this review article, special focus is given to the distinctive nature of nanomaterial-filled proton-conducting membranes and their essential characteristics, including their structural, dielectric, proton transport, and thermal properties. We provide an overview of the various reported nanomaterials, such as metal oxide, carbon, and polymeric nanomaterials. Additionally, the synthesis methods in situ polymerization, solution casting, electrospinning, and layer-by-layer assembly for proton-conducting membrane preparation were analyzed. In conclusion, the way to implement the desired energy conversion application, such as a fuel cell, using a nanostructured proton-conducting membrane has been demonstrated.

12.
Nanomaterials (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242070

ABSTRACT

Preparing electrode materials plays an essential role in the fabrication of high-performance supercapacitors. In general, heteroatom doping in carbon-based electrode materials enhances the electrochemical properties. Herein, nitrogen, oxygen, and sulfur co-doped porous carbon (PC) materials were prepared by direct pyrolysis of Anacardium occidentale (AO) nut-skin waste for high-performance supercapacitor applications. The as-prepared AO-PC material possessed interconnected micropore/mesopore structures and exhibited a high specific surface area of 615 m2 g-1. The Raman spectrum revealed a moderate degree of graphitization of AO-PC materials. These superior properties of the as-prepared AO-PC material help to deliver high specific capacitance. After fabricating the working electrode, the electrochemical performances including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements were conducted in 1 M H2SO4 aqueous solution using a three-electrode configuration for supercapacitor applications. The AO-PC material delivered a high specific capacitance of 193 F g-1 at a current density of 0.5 A g-1. The AO-PC material demonstrated <97% capacitance retention even after 10,000 cycles of charge-discharge at the current density of 5 A g-1. All the above outcomes confirmed that the as-prepared AO-PC from AO nut-skin waste via simple pyrolysis is an ideal electrode material for fabricating high-performance supercapacitors. Moreover, this work provides a cost-effective and environmentally friendly strategy for adding value to biomass waste by a simple pyrolysis route.

13.
Polymers (Basel) ; 15(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36987134

ABSTRACT

Here, a simple one-step hydrothermal-assisted carbonization process was adopted for the preparation of nitrogen/phosphorous-doped carbon dots from a water-soluble polymer, poly 2-(methacryloyloxy)ethyl phosphorylcholine (PMPC). By the free-radical polymerization method, PMPC was synthesized using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 4,4'-azobis (4-cyanovaleric acid). The water-soluble polymers, PMPC, that have nitrogen/phosphorus moieties are used to prepare carbon dots (P-CDs). The resulting P-CDs were thoroughly characterized by various analytical techniques such as field emission-scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS), high-resolution transmittance electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) spectroscopy and fluorescence spectroscopy to determine their structural and optical properties. The synthesized P-CDs displayed bright/durable fluorescence, were stable for long periods, and confirmed the enrichment of functionalities including oxygen, phosphorus, and nitrogen heteroatoms in the carbon matrix. Since the synthesized P-CDs showed bright fluorescence with excellent photostability, excitation-dependent fluorescence emission, and excellent quantum yield (23%), it has been explored as a fluorescent (security) ink for drawing and writing (anti-counterfeiting). Further, cytotoxicity study results advised for biocompatibility and thus were used for cellular multicolor imaging in nematodes. This work not only demonstrated the preparation of CDs from polymers that can be used as advanced fluorescence ink, a bioimaging agent for anti-counterfeiting, and cellular multicolor imaging candidate, but additionally prominently opened a new perspective on the bulk preparation of CDs simply and efficiently for various applications.

14.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904445

ABSTRACT

Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.

15.
Pharmaceutics ; 15(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36839684

ABSTRACT

Human placenta is loaded with an enormous amount of endogenous growth factors, thereby making it a superior biomaterial for tissue regeneration. Sericin is a naturally occurring silk protein that is extensively used for biomedical applications. In the present work, sericin and human placenta-derived extracellular matrix were blended and fabricated in the form of scaffolds using the freeze-drying method for cutaneous wound treatment. The prepared sericin/placenta-derived extracellular matrix (SPEM) scaffolds were characterized to determine their morphology, functional groups, mechanical strength, and antibacterial activity. Scanning electron microscopic analysis of the scaffolds showed smooth surfaces with interconnected pores. In vitro MTT and scratch wound assays performed using HaCaT cells proved the non-toxic and wound-healing efficacy of SPEM scaffolds. In vivo CAM assay using fertilized chick embryos proved the angiogenic potency of the scaffolds. Animal experiments using Wistar albino rats proved that the open excision wounds treated with SPEM scaffolds significantly reduced wound size with collagen deposition. These results confirm that SPEM scaffolds can serve as a promising biomaterial for tissue regeneration.

16.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679584

ABSTRACT

Chebulic Myrobalan is the main ingredient in the Ayurvedic formulation Triphala, which is used for kidney and liver dysfunctions. Herein, natural nitrogen-doped carbon dots (NN-CDs) were prepared from the hydrothermal carbonization of Chebulic Myrobalan and were demonstrated to sense heavy metal ions in an aqueous medium. Briefly, the NN-CDs were developed from Chebulic Myrobalan by a single-step hydrothermal carbonization approach under a mild temperature (200 °C) without any capping and passivation agents. They were then thoroughly characterized to confirm their structural and optical properties. The resulting NN-CDs had small particles (average diameter: 2.5 ± 0.5 nm) with a narrow size distribution (1-4 nm) and a relatable degree of graphitization. They possessed bright and durable fluorescence with excitation-dependent emission behaviors. Further, the as-synthesized NN-CDs were a good fluorometric sensor for the detection of heavy metal ions in an aqueous medium. The NN-CDs showed sensitive and selective sensing platforms for Fe3+ ions; the detection limit was calculated to be 0.86 µM in the dynamic range of 5-25 µM of the ferric (Fe3+) ion concentration. Moreover, these NN-CDs could expand their application as a potential candidate for biomedical applications and offer a new method of hydrothermally carbonizing waste biomass.


Subject(s)
Quantum Dots , Terminalia , Carbon/chemistry , Nitrogen/chemistry , Iron , Water/chemistry , Ions , Quantum Dots/chemistry , Fluorescent Dyes/chemistry
17.
Environ Res ; 216(Pt 3): 114706, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36336094

ABSTRACT

Silver nanoparticles (AgNPs) are often used as antibacterial agents. Here, graphene-silver nanoparticles (G-Ag) and graphene-silver nanoparticles poly-vinylpyrrolidone (G-AgPVPy) were prepared by chemical reduction and in-situ polymerization of vinylpyrrolidone (VPy). The prepared G-Ag and G-AgPVPy composites were characterized using various techniques. The size of the AgNPs on the graphene surface in the prepared G-Ag and G-AgPVPy composites was measured as ∼20 nm. The graphene sheets size in the G-Ag and G-AgPVPy composites were measured as 6.0-2.0 µm and 4.0-0.10 µm, respectively, which are much smaller than graphene sheets in graphite powder (GP) (10.0-3.0 µm). The physicochemical analysis confirmed the formation of G-Ag and G-AgPVPy composites and even the distribution of AgNPs and PVPy on the graphene sheets. The synthesized composites (G-AgPVPy, G-Ag) exhibited a broad-spectrum antibacterial potential against both Gram-negative and Gram-positive bacteria. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were calculated as >40 µg/mL using G-Ag and GP, while G-AgPVPy showed as 10 µg/mL against Staphylococcus aureus. Among GP, G-Ag, and G-AgPVPy, G-AgPVPy disturbs the cell permeability, damages the cell walls, and causes cell death efficiently. Also, G-AgPVPy was delivered as a significant reusable antibacterial potential candidate. The MIC value (10 µg/mL) did not change up to six subsequent MIC analysis cycles.


Subject(s)
Graphite , Metal Nanoparticles , Graphite/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
18.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432186

ABSTRACT

In this study, sustainable, low-cost, and environmentally friendly biomass (Terminalia chebula) was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The hydrothermally assisted Terminalia chebula fruit-derived N-CDs (TC-CDs) emitted different bright fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical morphology with a narrow size distribution and excellent water dispensability due to their abundant functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs. Additionally, these TC-CDs exhibited high photostability, good biocompatibility, very low toxicity, and excellent cell permeability against HCT-116 human colon carcinoma cells. The cell viability of HCT-116 human colon carcinoma cells in the presence of TC-CDs aqueous solution was calculated by MTT assay, and cell viability was higher than 95%, even at a higher concentration of 200 µg mL-1 after 24 h incubation time. Finally, the uptake of TC-CDs by HCT-116 human colon carcinoma cells displayed distinguished blue, green, and red colors during in vitro imaging when excited by three filters with different wavelengths under a laser scanning confocal microscope. Thus, TC-CDs could be used as a potential candidate for various biomedical applications. Moreover, the conversion of low-cost/waste natural biomass into products of value promotes the sustainable development of the economy and human society.


Subject(s)
Carcinoma , Quantum Dots , Terminalia , Humans , Carbon , Nitrogen , Fluorescent Dyes , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...