Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687891

ABSTRACT

Healthcare 4.0 is a recent e-health paradigm associated with the concept of Industry 4.0. It provides approaches to achieving precision medicine that delivers healthcare services based on the patient's characteristics. Moreover, Healthcare 4.0 enables telemedicine, including telesurgery, early predictions, and diagnosis of diseases. This represents an important paradigm for modern societies, especially with the current situation of pandemics. The release of the fifth-generation cellular system (5G), the current advances in wearable device manufacturing, and the recent technologies, e.g., artificial intelligence (AI), edge computing, and the Internet of Things (IoT), are the main drivers of evolutions of Healthcare 4.0 systems. To this end, this work considers introducing recent advances, trends, and requirements of the Internet of Medical Things (IoMT) and Healthcare 4.0 systems. The ultimate requirements of such networks in the era of 5G and next-generation networks are discussed. Moreover, the design challenges and current research directions of these networks. The key enabling technologies of such systems, including AI and distributed edge computing, are discussed.


Subject(s)
Internet of Things , Telemedicine , Humans , Artificial Intelligence , Internet , Biological Evolution
2.
Cancers (Basel) ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37345173

ABSTRACT

In the field of medical imaging, deep learning has made considerable strides, particularly in the diagnosis of brain tumors. The Internet of Medical Things (IoMT) has made it possible to combine these deep learning models into advanced medical devices for more accurate and efficient diagnosis. Convolutional neural networks (CNNs) are a popular deep learning technique for brain tumor detection because they can be trained on vast medical imaging datasets to recognize cancers in new images. Despite its benefits, which include greater accuracy and efficiency, deep learning has disadvantages, such as high computing costs and the possibility of skewed findings due to inadequate training data. Further study is needed to fully understand the potential and limitations of deep learning in brain tumor detection in the IoMT and to overcome the obstacles associated with real-world implementation. In this study, we propose a new CNN-based deep learning model for brain tumor detection. The suggested model is an end-to-end model, which reduces the system's complexity in comparison to earlier deep learning models. In addition, our model is lightweight, as it is built from a small number of layers compared to other previous models, which makes the model suitable for real-time applications. The optimistic findings of a rapid increase in accuracy (99.48% for binary class and 96.86% for multi-class) demonstrate that the new framework model has excelled in the competition. This study demonstrates that the suggested deep model outperforms other CNNs for detecting brain tumors. Additionally, the study provides a framework for secure data transfer of medical lab results with security recommendations to ensure security in the IoMT.

3.
Sensors (Basel) ; 22(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501861

ABSTRACT

In vehicular ad hoc networks (VANETs), content pre-caching is a significant technology that improves network performance and lowers network response delay. VANET faces network congestion when multiple requests for the same content are generated. Location-based dependency requirements make the system more congested. Content pre-caching is an existing challenge in VANET; pre-caching involves the content's early delivery to the requested vehicles to avoid network delays and control network congestion. Early content prediction saves vehicles from accidents and road disasters in urban environments. Periodic data dissemination without considering the state of the road and surrounding vehicles are considered in this research. The content available at a specified time poses considerable challenges in VANET for content delivery. To address these challenges, we propose a machine learning-based, zonal/context-aware-equipped content pre-caching strategy in this research. The proposed model improves content placement and content management in the pre-caching mode for VANET. Content caching is achieved through machine learning, which significantly improves content prediction by pre-caching the content early to the desired vehicles that are part of the zone. In this paper, three algorithms are presented, the first is zone selection using the customized algorithm, the second is the content dissemination algorithm, and the third is the content pre-caching decision algorithm using supervised machine learning that improves the early content prediction accuracy by 99.6%. The cache hit ratio for the proposed technique improves by 13% from the previous techniques. The prediction accuracy of the proposed technique is compared with CCMP, MLCP, and PCZS+PCNS on the number of vehicles from 10 to 150, with an improved average of 16%. Finally, the average delay reduces over time compared with the state-of-the-art techniques of RPSS, MLCP, CCMP, and PCZS+PCNS. Finally, the average delay shows that the proposed method effectively reduces the delay when the number of nodes increases. The proposed solution improves the content delivery request while comparing it with existing techniques. The results show improved pre-caching in VANET to avoid network congestion.


Subject(s)
Disasters , Intelligence , Machine Learning , Algorithms , Awareness
SELECTION OF CITATIONS
SEARCH DETAIL
...