Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 35(45): 14553-14565, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31614092

ABSTRACT

Gum arabic is a natural hydrocolloid composed of a diversity of amphiphilic species consisting of protein chains covalently linked to multiscale porous polysaccharides. Gum arabic is notably used as a food additive (E414) to provide metastability to oil-in-water emulsions, even after extensive dilution. Here, we investigate the mechanism underlying the emulsion stabilizing properties of gum arabic, using a combination of scattering and chromatographic analyses and the design of a harvesting method to collect adsorbed species. Increasing the interfacial packing of amphiphilic species leads to their irreversible interfacial aggregation, which is driven by hydrophobic interactions between protein chains. This aggregation is promoted by the size diversity of amphiphilic species, with smaller species first aggregating at intermediate interfacial packings, followed by larger species at higher packings. The resulting adsorbed layer can be considered as a shell composed of a two-dimensional protein network, irreversibly cross-linked through hydrophobic interactions, which is covalently linked to hyperbranched polysaccharide chains displaying severe conformational changes compared to their bulk structure. This shell is strongly anchored at the oil-water interface by the protein network and provides steric repulsions through the hydrated polysaccharides. Consequently, if such a shell is adequately formed during emulsification, emulsions stabilized by gum arabic may resist extensive mechanical stresses and display a long-term metastability even after drastic environmental changes. This paves the way toward more rational uses of gum arabic as an emulsion stabilizer in formulations and processes.

2.
Langmuir ; 35(4): 962-972, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30507121

ABSTRACT

Gum arabic is a heterogeneous natural hydrocolloid commonly used in the agro-food industry to provide metastability to oil-in-water emulsions. Since aqueous solutions of gum arabic contain a complex mixture of protein/polysaccharide conjugates, the composition of interfacial films is expected to differ from the bulk composition. Here, we investigate the composition of interfacial films in oil/water emulsions stabilized by gum arabic at various concentrations, pH and salinity. Using both size exclusion and hydrophobic interaction chromatography separations, we show that the interface is enriched in protein-rich species displaying a broad range of sizes. These species are irreversibly adsorbed as monolayers at the oil/water interface. We observe that the surface coverage density, or packing, of the adsorbed species at oil/water interfaces drastically increases with both the increasing gum concentration and decreasing ionic repulsions, through increasing the ionic strength or decreasing the pH. Strikingly, these packing changes correspond to only minor composition changes in the adsorbed layer. We thus conclude that the key parameter modified in different formulations is the conformation of the adsorbed species rather than their composition distribution. These findings can be readily used to adjust the amount of gum arabic necessary to produce metastable emulsions.

SELECTION OF CITATIONS
SEARCH DETAIL
...