Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(1): 313-324, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34932304

ABSTRACT

Activated sludge treatment leverages the ability of microbes to uptake and (co)-metabolize chemicals and has shown promise in eliminating trace organic contaminants (TrOCs) during wastewater treatment. However, targeted interventions to optimize the process are limited as the fundamental drivers of the observed reactions remain elusive. In this work, we present a comprehensive workflow for the identification and characterization of key enzymes involved in TrOCs biotransformation pathways in complex microbial communities. To demonstrate the applicability of the workflow, we investigated the role of the enzymatic group of multicopper oxidases (MCOs) as one putatively relevant driver of TrOCs biotransformation. To this end, we analyzed activated sludge metatranscriptomic data and selected, synthesized, and heterologously expressed three phylogenetically distinct MCO-encoding genes expressed in communities with different TrOCs oxidation potentials. Following the purification of the encoded enzymes, we screened their activities against different substrates. We saw that MCOs exhibit significant activities against selected TrOCs in the presence of the mediator compound 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and, in some cases, also in the presence of the wastewater contaminant 4'-hydroxy-benzotriazole. In the first case, we identified oxidation products previously reported from activated sludge communities and concluded that in the presence of appropriate mediators, bacterial MCOs could contribute to the biological removal of TrOCs. Similar investigations of other key enzyme systems may significantly advance our understanding of TrOCs biodegradation and assist the rational design of biology-based water treatment strategies in the future.


Subject(s)
Sewage , Water Pollutants, Chemical , Biotransformation , Organic Chemicals , Oxidoreductases/genetics , Sewage/chemistry , Wastewater
2.
Biotechnol Adv ; 37(8): 107417, 2019 12.
Article in English | MEDLINE | ID: mdl-31326522

ABSTRACT

Diatoms are among the most productive and ecologically important groups of microalgae in contemporary oceans. Due to their distinctive metabolic and physiological features, they offer exciting opportunities for a broad range of commercial and industrial applications. One such feature is their ability to synthesize a wide diversity of isoprenoid compounds. However, limited understanding of how these molecules are synthesized have until recently hindered their exploitation. Following comprehensive genomic and transcriptomic analysis of various diatom species, the biosynthetic mechanisms and regulation of the different branches of the pathway are now beginning to be elucidated. In this review, we provide a summary of the recent advances in understanding diatom isoprenoid synthesis and discuss the exploitation potential of diatoms as chassis for high-value isoprenoid synthesis.


Subject(s)
Diatoms , Microalgae , Biotechnology , Terpenes
3.
New Phytol ; 222(1): 230-243, 2019 04.
Article in English | MEDLINE | ID: mdl-30394540

ABSTRACT

Diatoms are eukaryotic, unicellular algae that are responsible for c. 20% of the Earth's primary production. Their dominance and success in contemporary oceans have prompted investigations on their distinctive metabolism and physiology. One metabolic pathway that remains largely unexplored in diatoms is isoprenoid biosynthesis, which is responsible for the production of numerous molecules with unique features. We selected the diatom species Haslea ostrearia because of its characteristic isoprenoid content and carried out a comprehensive transcriptomic analysis and functional characterization of the genes identified. We functionally characterized one farnesyl diphosphate synthase, two geranylgeranyl diphosphate synthases, one short-chain polyprenyl synthase, one bifunctional isopentenyl diphosphate isomerase - squalene synthase, and one phytoene synthase. We inferred the phylogenetic origin of these genes and used a combination of functional analysis and subcellular localization predictions to propose their physiological roles. Our results provide insight into isoprenoid biosynthesis in H. ostrearia and propose a model of the central steps of the pathway. This model will facilitate the study of metabolic pathways of important isoprenoids in diatoms, including carotenoids, sterols and highly branched isoprenoids.


Subject(s)
Diatoms/metabolism , Terpenes/metabolism , Base Sequence , Biosynthetic Pathways/genetics , Dimethylallyltranstransferase/metabolism , Gene Expression Profiling , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Lycopene/chemistry , Lycopene/metabolism , Models, Biological , Phylogeny , Subcellular Fractions/metabolism
4.
Sci Rep ; 7(1): 8855, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821847

ABSTRACT

Plants synthesize numerous specialized metabolites (also termed natural products) to mediate dynamic interactions with their surroundings. The complexity of plant specialized metabolism is the result of an inherent biosynthetic plasticity rooted in the substrate and product promiscuity of the enzymes involved. The pathway of carnosic acid-related diterpenes in rosemary and sage involves promiscuous cytochrome P450s whose combined activity results in a multitude of structurally related compounds. Some of these minor products, such as pisiferic acid and salviol, have established bioactivity, but their limited availability prevents further evaluation. Reconstructing carnosic acid biosynthesis in yeast achieved significant titers of the main compound but could not specifically yield the minor products. Specific production of pisiferic acid and salviol was achieved by restricting the promiscuity of a key enzyme, CYP76AH24, through a single-residue substitution (F112L). Coupled with additional metabolic engineering interventions, overall improvements of 24 and 14-fold for pisiferic acid and salviol, respectively, were obtained. These results provide an example of how synthetic biology can help navigating the complex landscape of plant natural product biosynthesis to achieve heterologous production of useful minor metabolites. In the context of plant adaptation, these findings also suggest a molecular basis for the rapid evolution of terpene biosynthetic pathways.


Subject(s)
Carbohydrate Metabolism , Diterpenes/metabolism , Yeasts/metabolism , Abietanes/biosynthesis , Cytochrome P-450 Enzyme System/genetics , Diterpenes/chemistry , Genetic Engineering , Genetic Variation , Genotype , Metabolic Networks and Pathways , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
Proc Natl Acad Sci U S A ; 113(13): 3681-6, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976595

ABSTRACT

Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.


Subject(s)
Abietanes/biosynthesis , Abietanes/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Biosynthetic Pathways , Biotechnology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Metabolic Engineering , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rosmarinus/genetics , Rosmarinus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Salvia/genetics , Salvia/metabolism , Synthetic Biology/methods
6.
Microb Cell Fact ; 15: 46, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26920948

ABSTRACT

BACKGROUND: Several plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast. RESULTS: Since the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11ß-hydroxy-manoyl oxide in yeast. To improve 11ß-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11ß-hydroxy-manoyl oxide titers, reaching 21.2 mg L(-1). CONCLUSIONS: In this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11ß and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of heterozygous deletions and the improved yeast strain reported here will provide a useful tool for the production of numerous other isoprenoids.


Subject(s)
Colforsin/metabolism , Diterpenes/metabolism , Saccharomyces cerevisiae/enzymology , Abietanes/biosynthesis , Abietanes/chemistry , Alkyl and Aryl Transferases/metabolism , Biosynthetic Pathways , Colforsin/chemistry , Diterpenes/chemistry , Kinetics , Mevalonic Acid/chemistry , Mevalonic Acid/metabolism , Oxidation-Reduction , Substrate Specificity , Terpenes/chemistry , Terpenes/metabolism
7.
Microb Cell Fact ; 14: 60, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25903744

ABSTRACT

BACKGROUND: Terpenoids (isoprenoids) have numerous applications in flavors, fragrances, drugs and biofuels. The number of microbially produced terpenoids is increasing as new biosynthetic pathways are being elucidated. However, efforts to improve terpenoid production in yeast have mostly taken advantage of existing knowledge of the sterol biosynthetic pathway, while many additional factors may affect the output of the engineered system. RESULTS: Aiming to develop a yeast strain that can support high titers of sclareol, a diterpene of great importance for the perfume industry, we sought to identify gene deletions that improved carotenoid, and thus potentially sclareol, production. Using a carotenogenic screen, the best 100 deletion mutants, out of 4,700 mutant strains, were selected to create a subset for further analysis. To identify combinations of deletions that cooperate to further boost production, iterative carotenogenic screens were applied, and each time the top performing gene deletions were further ranked according to the number of genetic and physical interactions known for each specific gene. The gene selected in each round was deleted and the resulting strain was employed in a new round of selection. This approach led to the development of an EG60 derived haploid strain combining six deletions (rox1, dos2, yer134c, vba5, ynr063w and ygr259c) and exhibiting a 40-fold increase in carotenoid and 12-fold increase in sclareol titers, reaching 750 mg/L sclareol in shake flask cultivation. CONCLUSION: Using an iterative approach, we identified novel combinations of yeast gene deletions that improve carotenoid and sclareol production titers without compromising strain growth and viability. Most of the identified deletions have not previously been implicated in sterol pathway control. Applying the same approach using a different starting point could yield alternative sets of deletions with similar or improved outcome.


Subject(s)
Carotenoids/metabolism , Diterpenes/metabolism , Ergosterol/biosynthesis , Saccharomyces cerevisiae/metabolism , Terpenes/metabolism , Ergosterol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...