Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 54: 110423, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38690318

ABSTRACT

Experimental structural data for bis(terpyridine)iron(II) and a series of related iron(II) complexes, featuring either substituted terpyridine or tris-azinyl analogues of terpyridine, are presented and analyzed in terms of the Mean Absolute Deviation (MAD) from the average experimental data for each specific complex. The experimental structural data are then juxtaposed with density functional theory (DFT) calculated data obtained using various combinations of DFT functionals and basis sets, with and without the inclusion of Grimme D3 empirical dispersion correction. These diverse computational approaches yield optimized geometries that are subsequently compared against the available experimental structural data to assess their accuracy. The aim is to identify a reliable DFT method for determining the geometries of bis(terpyridine)iron(II) and its related complexes.

2.
J Mol Graph Model ; 129: 108753, 2024 06.
Article in English | MEDLINE | ID: mdl-38461758

ABSTRACT

Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(Ln)2]2+ complexes, containing substituted terpyridine and related ligands L1-L19, we determined the wavelengths (λ in nm), transition energy (E in eV), oscillator strength (f), type of transitions, excited state lifetime (τ), light harvesting efficiency (LHE), frontier orbital character and their energies (ELUMO/EHOMO), natural transition orbitals (NTOs), injection driving force of a dye (ΔGinject), and regeneration driving force of a dye (ΔGregenerate). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV-visible spectra of [Fe(Ln)2]2+ exhibited a peak above 500 nm (λmax) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (λA,max) in the UV region. The M06-D3/CEP-121G method replicated all reported λmax and λA,max values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.


Subject(s)
Coloring Agents , Solar Energy , Coloring Agents/chemistry , Iron , Spectrophotometry, Ultraviolet , Ferrous Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...