Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(48): e2305296, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37515825

ABSTRACT

The benefits of ultrasound are its ease-of-use and its ability to precisely deliver energy in opaque and complex media. However, most materials responsive to ultrasound show a weak response, requiring the use of high powers, which are associated with undesirable streaming, cavitation, or temperature rise. These effects hinder response control and may even cause damage to the medium where the ultrasound is applied. Moreover, materials that are currently in use rely on all-or-nothing effects, limiting the ability to fine-tune the response of the material on the fly. For these reasons, there is a need for materials that can respond to low intensity ultrasound with programmable responses. Here it is demonstrated that antibubbles are a low-intensity-ultrasound-responsive material system that can controllably release a payload using acoustic pressures in the kilopascal range. Varying their size and composition tunes the release pressure, and the response can be switched between a single release and stepwise release across multiple ultrasound pulses. Observations using confocal and high-speed microscopy reveal different ways that can lead to release. These findings lay the groundwork to design antibubbles that controllably respond to low-intensity ultrasound, opening a wide range of applications ranging from ultrasound-responsive material systems to carriers for targeted delivery.

2.
Article in English | MEDLINE | ID: mdl-37028299

ABSTRACT

Acoustic holograms are able to control pressure fields with high spatial resolution, enabling complex fields to be projected with minimal hardware. This capability has made holograms attractive tools for applications, including manipulation, fabrication, cellular assembly, and ultrasound therapy. However, the performance benefits of acoustic holograms have traditionally come at the cost of temporal control. Once a hologram is fabricated, the field it produces is static and cannot be reconfigured. Here, we introduce a technique to project time-dynamic pressure fields by combining an input transducer array with a multiplane hologram, which is represented computationally as a diffractive acoustic network (DAN). By exciting different input elements in the array, we can project distinct and spatially complex amplitude fields to an output plane. We numerically show that the multiplane DAN outperforms a single-plane hologram, while using fewer total pixels. More generally, we show that adding more planes can increase the output quality of the DAN for a fixed number of degrees of freedom (DoFs; pixels). Finally, we leverage the pixel efficiency of the DAN to introduce a combinatorial projector that can project more output fields than there are transducer inputs. We experimentally demonstrate that a multiplane DAN could be used to realize such a projector.

3.
Phys Rev Lett ; 128(25): 254502, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35802439

ABSTRACT

Manipulation of macroscale objects by sound is fundamentally limited by the wavelength and object size. Resonant subwavelength scatterers such as bubbles can decouple these requirements, but typically the forces are weak. Here we show that patterning bubbles into arrays leads to geometric amplification of the scattering forces, enabling the precise assembly and manipulation of cm-scale objects. We rotate a 1 cm object continuously or position it with 15 µm accuracy, using sound with a 50 cm wavelength. The results are described well by a theoretical model. Our results lay the foundation for using secondary Bjerknes forces in the controlled organization and manipulation of macroscale structures.


Subject(s)
Acoustics , Microbubbles , Models, Theoretical , Sound
4.
Chem Rev ; 122(5): 5165-5208, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34767350

ABSTRACT

Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.


Subject(s)
Smart Materials
5.
Nat Commun ; 11(1): 4537, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913270

ABSTRACT

Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal-oxide-semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM.

6.
ACS Nano ; 14(10): 13673-13680, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32946220

ABSTRACT

When asymmetric Janus micromotors are immobilized on a surface, they act as chemically powered micropumps, turning chemical energy from the fluid into a bulk flow. However, such pumps have previously produced only localized recirculating flows, which cannot be used to pump fluid in one direction. Here, we demonstrate that an array of three-dimensional, photochemically active Au/TiO2 Janus pillars can pump water. Upon UV illumination, a water-splitting reaction rapidly creates a directional bulk flow above the active surface. By lining a 2D microchannel with such active surfaces, various flow profiles are created within the channels. Analytical and numerical models of a channel with active surfaces predict flow profiles that agree very well with the experimental results. The light-driven active surfaces provide a way to wirelessly pump fluids at small scales and could be used for real-time, localized flow control in complex microfluidic networks.

7.
J Acoust Soc Am ; 146(2): 885, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472582

ABSTRACT

Optical breakdown of water is used as a sound source to excite a broadband set of leaky Lamb waves in submerged aluminum plates. The source is shown to simultaneously excite guided modes spanning 0.1-5 MHz in frequency and 0-0.8 mm-1 in wavenumber. The measured response overlaps well with dispersion curves for Lamb waves in the plates, revealing strong coupling to both symmetric and antisymmetric modes. The strongest responses arise when a mode's phase velocity approximately equals the plate's compressional wave velocity. These results are shown to arise from an interplay of the sensing geometry, guided wave speeds, and signal processing. Finally, implications for non-contact sensing are discussed.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1870-1873, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268691

ABSTRACT

Between 7-18 million Americans suffer from sleep disordered breathing (SDB), including those who suffer from obstructive sleep apnea (OSA). Despite this high prevalence and burden of OSA, existing diagnostic techniques remain impractical for widespread screening. In this study, we introduce a new model for OSA screening and describe an at-home wearable sleep mask (named ARAM) that can robustly track the wearers' sleep patterns. This monitoring is achieved using select sensors that enable screening and monitoring in a form-factor that can be easily self-instrumented. Based on feedback from sleep doctors and technicians, we incorporate the most valuable sensors for OSA diagnosis, while maintaining ease-of-use and comfort for the patient. We discuss the results of preliminary field trials, where both our sleep mask and a commercially available device were worn simultaneously to evaluate our device's robustness. Based on these results, we discuss next steps for the design of the screening system, including analyses techniques that would provide more efficient screening than existing systems.


Subject(s)
Mass Screening , Polysomnography/instrumentation , Sleep Apnea, Obstructive/diagnosis , Adult , Aged , Equipment Design , Feedback , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Sleep Apnea, Obstructive/physiopathology , Spectrum Analysis
9.
Rev Sci Instrum ; 85(8): 083708, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173277

ABSTRACT

We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)(3) field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.


Subject(s)
Particulate Matter/chemistry , Tomography, X-Ray/instrumentation , Tomography, X-Ray/methods , Calibration , Tomography, X-Ray/standards , Weight-Bearing
10.
Soft Matter ; 10(1): 48-59, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24651965

ABSTRACT

We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

11.
Phys Rev Lett ; 108(10): 108302, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22463461

ABSTRACT

Random packings of granular chains are presented as a model system to investigate the contribution of entanglements to strain stiffening. The chain packings are sheared in uniaxial compression experiments. For short chain lengths, these packings yield when the shear stress exceeds the scale of the confining pressure, similar to granular packings of unconnected particles. In contrast, packings of chains which are long enough to form loops exhibit strain stiffening, in which the effective stiffness of the material increases with strain, similar to many polymer materials. The latter packings can sustain stresses orders-of-magnitude greater than the confining pressure, and do not yield until the chain links break. X-ray tomography measurements reveal that the strain-stiffening packings contain system-spanning clusters of entangled chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...