Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virtual Mentor ; 13(3): 186-9, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-23127323
2.
Drug Metab Dispos ; 38(7): 1083-93, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20400660

ABSTRACT

The study was initiated as an observation of incomplete extraction recovery of N-(4-(3-chloro-4-(2-pyridinylmethoxy)anilino)-3-cyano-7-ethoxy-6-quinolyl)-4-(dimethylamino)-2-butenamide (HKI-272) from human plasma. The objective of this study was to 1) identify the binding site(s) of HKI-272 to human plasma protein(s); 2) characterize the nature of the binding; and 3) evaluate the potential reversibility of the covalent binding. After incubation of [(14)C]HKI-272 with human plasma, the mixture was directly injected on liquid chromatography/mass spectrometry (LC/MS), and an intact molecular mass of HKI-272 human serum albumin (HSA) adduct was determined to be 66,999 Da, which is 556 Da (molecular mass of HKI-272) larger than the measured molecular mass of HSA (66,443 Da). For peptide mapping, the incubation mixture was separated with SDS-polyacrylamide gel electrophoresis followed by tryptic digestion combined with LC/tandem MS. A radioactive peptide fragment, LDELRDEGKASSAK [amino acid (AA) residue 182-195 of albumin], was confirmed to covalently bind to HKI-272. In addition, after HCl hydrolysis, a radioactive HKI-272-lysine adduct was identified by LC/MS. After combining the results of tryptic digestion and HCl hydrolysis, the AA residue of Lys190 of HSA was confirmed to covalently bind to HKI-272. A standard HKI-272-lysine was synthesized and characterized by NMR. The data showed that the adduct was formed via Michael addition with the epsilon-amine of lysine attacking to the beta-carbon of the amide moiety of HKI-272. Furthermore, reversibility of the covalent binding of HKI-272 to HSA was shown when a gradual release of HKI-272 was observed from protein pellet of HKI-272-treated human plasma after resuspension in phosphate buffer, pH 7.4, at 37 degrees C for 18 h.


Subject(s)
Chemistry, Pharmaceutical/methods , Quinolines/blood , Serum Albumin/metabolism , Amino Acid Sequence , Binding Sites , Carbon Radioisotopes/blood , Humans , Peptide Mapping/methods , Peptides/metabolism , Radioligand Assay/methods
3.
Chem Res Toxicol ; 19(10): 1270-83, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17040096

ABSTRACT

The inability to predict if a metabolically bioactivated compound will cause toxicity in later stages of drug development or post-marketing is of serious concern. One approach for improving the predictive success of compound toxicity has been to compare the gene expression profile in preclinical models dosed with novel compounds to a gene expression database generated from compounds with known toxicity. While this guilt-by-association approach can be useful, it is often difficult to elucidate gene expression changes that may be related to the generation of reactive metabolites. In an effort to address this issue, we compared the gene expression profiles obtained from animals treated with a soft-electrophile-producing hepatotoxic compound against corresponding deuterium labeled analogues resistant to metabolic processing. Our aim was to identify a subset of potential biomarker genes for hepatotoxicity caused by soft-electrophile-producing compounds. The current study utilized a known hepatotoxic compound N-methylformamide (NMF) and its two analogues labeled with deuterium at different positions to block metabolic oxidation at the formyl (d(1)) and methyl (d(3)) moieties. Groups of mice were dosed with each compound, and their livers were harvested at different time intervals. RNA was prepared and analyzed on Affymetrix GeneChip arrays. RNA transcripts showing statistically significant changes were identified, and selected changes were confirmed using TaqMan RT-PCR. Serum clinical chemistry and histopathologic evaluations were performed on selected samples as well. The data set generated from the different groups of animals enabled us to determine which gene expression changes were attributed to the bioactivating pathway. We were able to selectively modulate the metabolism of NMF by labeling various positions of the molecule with a stable isotope, allowing us to monitor gene changes specifically due to a particular metabolic pathway. Two groups of genes were identified, which were associated with the metabolism of a certain part of the NMF molecule. The metabolic pathway leading to the production of reactive methyl isocyanate resulted in distinct expression patterns that correlated with histopathologic findings. There was a clear correlation between the expression of certain genes involved in the cell cycle/apoptosis and inflammatory pathways and the presence of reactive metabolite. These genes may serve as potential genomic biomarkers of hepatotoxicity induced by soft-electrophile-producing compounds. However, the robustness of these potential genomic biomarkers will need to be validated using other hepatotoxicants (both soft- and hard-electrophile-producing agents) and compounds known to cause idiosyncratic liver toxicity before being adopted into the drug discovery screening process.


Subject(s)
Formamides/metabolism , Formamides/toxicity , Genome/genetics , Liver/drug effects , Liver/metabolism , Toxicogenetics , Animals , Biomarkers , Down-Regulation/drug effects , Formamides/chemistry , Isotope Labeling , Kinetics , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Time Factors , Up-Regulation/drug effects
4.
Rapid Commun Mass Spectrom ; 19(23): 3482-92, 2005.
Article in English | MEDLINE | ID: mdl-16261644

ABSTRACT

The formation of reactive metabolites from a number of compounds was studied in vitro using a mixture of non-labeled and stable isotope labeled glutathione (GSH) as a trapping agent. GSH was labeled by incorporating [1,2-(13)C(2),(15)N]glycine into the tripeptide to give an overall increase of 3 Da over the naturally occurring substance. Detection and characterization of reactive metabolites was greatly facilitated by using the data-dependent scanning features of the linear ion trap mass spectrometers to give complimentary and confirmatory data in a single analytical run. A comparison was made by analyzing the samples simultaneously on a triple-stage quadrupole mass spectrometer operated in the constant neutral loss mode. The compounds studied included 2-acetamidophenol, 3-acetamidophenol, 4-acetamidophenol (acetaminophen), and flufenamic acid. GSH adducts for each of these compounds produced a characteristic pattern of 'twin ions' separated by 3 Da in the mass spectral data. This greatly facilitated the detection and characterization of any GSH-related adducts present in the microsomal extracts. Furthermore, characterization of these adducts was greatly facilitated by the rapid scanning capability of linear ion trap instruments that provided full-scan, MS/MS and MS(3) data in one single analysis. This method of detecting and characterizing reactive metabolites generated in vitro was found to be far superior to any of the existing methods previously employed in this laboratory. The combination of two techniques, stable isotope labeled glutathione and linear ion traps, provided a very sensitive and specific method of identifying compounds capable of producing reactive metabolites in a discovery setting. The complimentary set of mass spectral data (including full-scan, MS/MS and MS(3) mass spectra), obtained rapidly in a single analysis with the linear ion trap instruments, greatly accelerated identification of metabolically bioactivated soft spots on the molecules. This in turn enabled chemists to rapidly design out the potential metabolic liability from the back-up compounds by making appropriate structural modifications.


Subject(s)
Drug Evaluation, Preclinical , Glutathione/metabolism , Pharmaceutical Preparations/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Acetaminophen/analysis , Acetaminophen/metabolism , Animals , Flufenamic Acid/analysis , Flufenamic Acid/metabolism , Glutathione/analysis , Humans , In Vitro Techniques , Isotope Labeling , Microsomes, Liver/metabolism , Pharmaceutical Preparations/analysis , Rats , Sensitivity and Specificity
5.
Cancer Res ; 63(21): 7301-9, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-14612527

ABSTRACT

Signaling through vascular endothelial growth factor (VEGF) receptors (VEGFRs) is a key pathway initiating endothelial cell proliferation and migration resulting in angiogenesis, a requirement for human tumor growth and metastasis. Abrogation of signaling through VEGFR by a variety of approaches has been demonstrated to inhibit angiogenesis and tumor growth. Small molecule inhibitors of VEGFR tyrosine kinase have been shown to inhibit angiogenesis, inhibit tumor growth, and prevent metastases. Our goal was to discover and characterize an p.o. active VEGFR-2 small molecule inhibitor. A novel isothiazole, CP-547,632, was identified as a potent inhibitor of the VEGFR-2 and basic fibroblast growth factor (FGF) kinases (IC(50) = 11 and 9 nM, respectively). It is selective relative to epidermal growth factor receptor, platelet-derived growth factor beta, and other related TKs. It also inhibits VEGF-stimulated autophosphorylation of VEGFR-2 in a whole cell assay with an IC(50) value of 6 nM. After oral administration of CP-547,632 to mice bearing NIH3T3/H-ras tumors, VEGFR-2 phosphorylation in tumors was inhibited in a dose-dependent fashion (EC(50) = 590 ng/ml). These plasma concentrations correlated well with the observed concentrations of the compound necessary to inhibit VEGF-induced corneal angiogenesis in BALB/c mice. A sponge angiogenesis assay was used to directly compare the inhibitory activities of CP-547,632 against FGF receptor 2 or VEGFR-2; this compound potently inhibits both basic FGF and VEGF-induced angiogenesis in vivo. The antitumor efficacy of this agent was evaluated after once daily p.o. administration to athymic mice bearing human xenografts and resulted in as much as 85% tumor growth inhibition. CP-547,632 is a well-tolerated, orally-bioavailable inhibitor presently under clinical investigation for the treatment of human malignancies.


Subject(s)
Enzyme Inhibitors/pharmacology , Thiazoles/pharmacology , Urea/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Kinetics , Male , Mice , Mice, Inbred C3H , Mice, Nude , NIH 3T3 Cells , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/drug therapy , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Urea/analogs & derivatives , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...