Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 164(1): 27-42, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35714327

ABSTRACT

ABSTRACT: Head and neck squamous cell carcinoma (HNSCC) causes more severe pain and psychological stress than other types of cancer. Despite clinical evidence linking pain, stress, and cancer progression, the underlying relationship between pain and sympathetic neurotransmission in oral cancer is unknown. We found that human HNSCC tumors and mouse tumor tissue are innervated by peripheral sympathetic and sensory nerves. Moreover, ß-adrenergic 1 and 2 receptors (ß-ARs) are overexpressed in human oral cancer cell lines, and norepinephrine treatment increased ß-AR2 protein expression as well as cancer cell proliferation in vitro. We have recently demonstrated that inhibition of tumor necrosis factor alpha (TNFα) signaling reduces oral cancer-induced nociceptive behavior. Norepinephrine-treated cancer cell lines secrete more TNFα which, when applied to tongue-innervating trigeminal neurons, evoked a larger Ca 2+ transient; TNF-TNFR inhibitor blocked the increase in the evoked Ca 2+ transient. Using an orthotopic xenograft oral cancer model, we found that mice demonstrated significantly less orofacial cancer-induced nociceptive behavior during systemic ß-adrenergic inhibitory treatment with propranolol. Furthermore, chemical sympathectomy using guanethidine led to a significant reduction in tumor size and nociceptive behavior. We infer from these results that sympathetic signaling modulates oral cancer pain through TNFα secretion and tumorigenesis. Further investigation of the role of neurocancer communication in cancer progression and pain is warranted.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mice , Animals , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Mouth Neoplasms/complications , Nociception , Norepinephrine/pharmacology , Norepinephrine/therapeutic use , Pain , Adrenergic Agents/therapeutic use , Cell Line, Tumor
2.
Front Pain Res (Lausanne) ; 3: 991725, 2022.
Article in English | MEDLINE | ID: mdl-36172037

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) patients report severe function-induced pain at the site of the primary tumor. The current hypothesis is that oral cancer pain is initiated and maintained in the cancer microenvironment due to secretion of algogenic mediators from tumor cells and surrounding immune cells that sensitize the primary sensory neurons innervating the tumor. Immunogenicity, which is the ability to induce an adaptive immune response, has been widely studied using cancer cell transplantation experiments. However, oral cancer pain studies have primarily used xenograft transplant models in which human-derived tumor cells are inoculated in an athymic mouse lacking an adaptive immune response; the role of inflammation in oral cancer-induced nociception is still unknown. Using syngeneic oral cancer mouse models, we investigated the impact of tumor cell immunogenicity and growth on orofacial nociceptive behavior and oral cancer-induced sensory neuron plasticity. We found that an aggressive, weakly immunogenic mouse oral cancer cell line, MOC2, induced rapid orofacial nociceptive behavior in both male and female C57Bl/6 mice. Additionally, MOC2 tumor growth invoked a substantial injury response in the trigeminal ganglia as defined by a significant upregulation of injury response marker ATF3 in tongue-innervating trigeminal neurons. In contrast, using a highly immunogenic mouse oral cancer cell line, MOC1, we found a much slower onset of orofacial nociceptive behavior in female C57Bl/6 mice only as well as sex-specific differences in the tumor-associated immune landscape and gene regulation in tongue innervating sensory neurons. Together, these data suggest that cancer-induced nociceptive behavior and sensory neuron plasticity can greatly depend on the immunogenic phenotype of the cancer cell line and the associated immune response.

3.
Adv Biol (Weinh) ; 6(9): e2200019, 2022 09.
Article in English | MEDLINE | ID: mdl-35388989

ABSTRACT

Head and neck squamous cell carcinoma are highly innervated by peripheral sensory neurons. Local neurotransmitter release (e.g., calcitonin gene-related peptide (CGRP)) from sensory neurons innervating cancer is linked to tumorigenesis. CGRP-immunoreactive nerve presence comprised 9.53±1.9% of total nerve area across 11 HNSCC patients. A syngeneic tongue tumor transplant mouse model of oral cancer and a global Calca knockout mouse (CGRPKO ) are used to investigate the impact of CGRP signaling on tumor growth and the associated immune response in vivo. In tumor-bearing CGRPKO mice, there is a significant reduction in tumor size over time compared to wildtype mice using two different mouse oral cancer cell lines. Furthermore, tumor tissue from CGRPKO mice had a significant increase in tumor-infiltrating CD4+ T cells, cytotoxic CD8+ T cells, and NK1.1+ NK cells compared to wildtype. Fluorescent-activated cell sorting and real-time qPCR are used to confirm that CD4+ T cells are isolated from tumor-bearing wildtype mice containing a high expression of Ramp1 compared to sham mice. These data suggest that sensory neurotransmitter CGRP may modulate oral cancer progression via tumor immunosurveillance. Understanding the relationship between sensory neurons and cancer will aid in repurposing clinically available nervous system drugs for the treatment of cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , CD8-Positive T-Lymphocytes/chemistry , Calcitonin Gene-Related Peptide/genetics , Carcinoma, Squamous Cell/drug therapy , Mice , Mice, Knockout , Mouth Neoplasms/drug therapy , Neurotransmitter Agents , Sensory Receptor Cells/chemistry , Squamous Cell Carcinoma of Head and Neck
SELECTION OF CITATIONS
SEARCH DETAIL
...