Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 41(4): 807-817.e6, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037617

ABSTRACT

Patients with short telomere syndromes (STS) are predisposed to developing cancer, believed to stem from chromosome instability in neoplastic cells. We tested this hypothesis in a large cohort assembled over the last 20 years. We found that the only solid cancers to which patients with STS are predisposed are squamous cell carcinomas of the head and neck, anus, or skin, a spectrum reminiscent of cancers seen in patients with immunodeficiency. Whole-genome sequencing showed no increase in chromosome instability, such as translocations or chromothripsis. Moreover, STS-associated cancers acquired telomere maintenance mechanisms, including telomerase reverse transcriptase (TERT) promoter mutations. A detailed study of the immune status of patients with STS revealed a striking T cell immunodeficiency at the time of cancer diagnosis. A similar immunodeficiency that impaired tumor surveillance was documented in mice with short telomeres. We conclude that STS patients' predisposition to solid cancers is due to T cell exhaustion rather than autonomous defects in the neoplastic cells themselves.


Subject(s)
Carcinoma, Squamous Cell , Telomerase , Animals , Mice , Telomere/genetics , Telomere/metabolism , Carcinoma, Squamous Cell/genetics , Chromosomal Instability , Mutation , Telomerase/genetics , Telomerase/metabolism , T-Lymphocytes/metabolism
2.
J Infect Dis ; 224(4): 606-615, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34398245

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a severe clinical phenotype of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that remains poorly understood. METHODS: Hospitalized children <18 years of age with suspected coronavirus disease 2019 (COVID-19) (N = 53) were recruited into a prospective cohort study; 32 had confirmed COVID-19, with 16 meeting the US Centers for Disease Control criteria for MIS-C. Differences in nasopharyngeal viral ribonucleic acid (RNA) levels, SARS-CoV-2 seropositivity, and cytokine/chemokine profiles were examined, including after adjustments for age and sex. RESULTS: The median ages for those with and without MIS-C were 8.7 years (interquartile range [IQR], 5.5-13.9) and 2.2 years (IQR, 1.1-10.5), respectively (P = .18), and nasopharyngeal levels of SARS-CoV-2 RNA did not differ significantly between the 2 groups (median 63 848.25 copies/mL versus 307.1 copies/mL, P = .66); 75% of those with MIS-C were antibody positive compared with 44% without (P = .026). Levels of 14 of 37 cytokines/chemokines (interleukin [IL]-1RA, IL-2RA, IL-6, IL-8, tumor necrosis factor-α, IL-10, IL-15, IL-18, monocyte chemoattractant protein [MCP]-1, IP-10, macrophage-inflammatory protein [MIP]-1α, MCP-2, MIP-1ß, eotaxin) were significantly higher in children with MIS-C compared to those without, irrespective of age or sex (false discovery rate <0.05; P < .05). CONCLUSIONS: The distinct pattern of heightened cytokine/chemokine dysregulation observed with MIS-C, compared with acute COVID-19, occurs across the pediatric age spectrum and with similar levels of nasopharyngeal SARS-CoV-2 RNA.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Chemokines/metabolism , Cytokines/metabolism , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology , Adolescent , Age Factors , Antibodies, Viral/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Host-Pathogen Interactions , Humans , Male , RNA, Viral , Serologic Tests , Severity of Illness Index , Sex Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Viral Load
3.
Genes Dev ; 33(19-20): 1381-1396, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31488579

ABSTRACT

Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3' end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8-/- mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8-/- brain transcriptome was highly dysregulated, showing accumulation and 3' end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3' end maturation mechanism that vertebrate TR shares with replication-dependent histones.


Subject(s)
Carrier Proteins/genetics , Idiopathic Pulmonary Fibrosis/genetics , Loss of Function Mutation , Nuclear Proteins/genetics , RNA/metabolism , Telomerase/metabolism , Animals , Brain/enzymology , Brain/physiopathology , Cell Line , Cilia/genetics , Female , Genetic Linkage , HCT116 Cells , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/physiopathology , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/genetics , Pedigree , RNA Processing, Post-Transcriptional/genetics , Telomere Shortening/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...