Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631569

ABSTRACT

Anxiety, learning disabilities, and depression are the symptoms of attention deficit hyperactivity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns obtained from Ulam's spiral and Sophia Germain's prime numbers. The EEG signals are initially filtered to remove the noise and segmented with a non-overlapping sliding window of a length of 512 samples. Then, a time-frequency analysis approach, namely continuous wavelet transform, is applied to each channel of the segmented EEG signal to interpret it in the time and frequency domain. The obtained time-frequency representation is saved as a time-frequency image, and a non-overlapping n × n sliding window is applied to this image for patch extraction. An n × n Ulam's spiral is localized on each patch, and the gray levels are acquired from this patch as features where Sophie Germain's primes are located in Ulam's spiral. All gray tones from all patches are concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm, namely ReliefF, is employed on the representative features to acquire the final most important gray tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated using a bigger database and it can also be used to detect other children's neurological disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Electroencephalography , Algorithms , Anxiety , Anxiety Disorders , Niacinamide
2.
Biocybern Biomed Eng ; 42(3): 1066-1080, 2022.
Article in English | MEDLINE | ID: mdl-36092540

ABSTRACT

The polymerase chain reaction (PCR) test is not only time-intensive but also a contact method that puts healthcare personnel at risk. Thus, contactless and fast detection tests are more valuable. Cough sound is an important indicator of COVID-19, and in this paper, a novel explainable scheme is developed for cough sound-based COVID-19 detection. In the presented work, the cough sound is initially segmented into overlapping parts, and each segment is labeled as the input audio, which may contain other sounds. The deep Yet Another Mobile Network (YAMNet) model is considered in this work. After labeling, the segments labeled as cough are cropped and concatenated to reconstruct the pure cough sounds. Then, four fractal dimensions (FD) calculation methods are employed to acquire the FD coefficients on the cough sound with an overlapped sliding window that forms a matrix. The constructed matrixes are then used to form the fractal dimension images. Finally, a pretrained vision transformer (ViT) model is used to classify the constructed images into COVID-19, healthy and symptomatic classes. In this work, we demonstrate the performance of the ViT on cough sound-based COVID-19, and a visual explainability of the inner workings of the ViT model is shown. Three publically available cough sound datasets, namely COUGHVID, VIRUFY, and COSWARA, are used in this study. We have obtained 98.45%, 98.15%, and 97.59% accuracy for COUGHVID, VIRUFY, and COSWARA datasets, respectively. Our developed model obtained the highest performance compared to the state-of-the-art methods and is ready to be tested in real-world applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...