Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(19): 4853-4863, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38691762

ABSTRACT

Neutron diffraction with empirical potential structure refinement was used to investigate the bulk liquid nanostructure of mixtures of choline arginate (Ch[Arg]), choline lysinate (Ch[Lys]), and water at mole ratios of 1Ch[Arg]:1Ch[Lys]:6H2O (balanced), 1Ch[Arg]:1Ch[Lys]:20H2O (balanced dilute), 3Ch[Arg]:1Ch[Lys]:12H2O (Arg- rich), and 1Ch[Arg]:3Ch[Lys]:12H2O (Lys- rich). The Arg- and Lys- anions tend not to associate due to electrostatic repulsion between charge groups and weak anion-anion attractions. This means that the local ion structures around the anions in these mixtures resemble the parent single-component systems. The bulk liquid nanostructure varies with the Arg-:Lys- ratio. In the Lys--rich mixture (1Ch[Arg]:3Ch[Lys]:12H2O), Lys- side chains cluster into a continuous apolar domain separated from a charged domain of polar groups. In the balanced mixture (1Ch[Arg]:1Ch[Lys]:6H2O), Lys- side chains form discrete apolar aggregates within a continuous polar domain of Arg-, Ch+, and water, and in the Arg--rich mixture (3Ch[Arg]:1Ch[Lys]:12H2O), the distribution of Lys- and Arg- is nearly homogeneous. Finally, in the balance dilute system (1Ch[Arg]:1Ch[Lys]:20H2O), a percolating water domain forms.

2.
Small ; : e2311353, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573945

ABSTRACT

Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.

3.
J Colloid Interface Sci ; 657: 320-326, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38043233

ABSTRACT

HYPOTHESIS: The self-assembly structures and phase behaviour of phospholipids in protic ionic liquids (ILs) depend on intermolecular forces that can be controlled through changes in the size, polarity, and H-bond capacity of the solvent. EXPERIMENTS: The structure and temperature stability of the self-assembled phases formed by four phospholipids in three ILs was determined by a combination of small- and wide-angle X-ray scattering (SAXS and WAXS) and small-angle neutron scattering (SANS). The phospholipids have identical phosphocholine head groups but different alkyl tail lengths and saturations (DOPC, POPC, DPPC and DSPC), while the ILs' amphiphilicity, H-bond network density and polarity are varied between propylammonium nitrate (PAN) to ethylammonium nitrate (EAN) to ethanolammonium nitrate (EtAN). FINDINGS: The observed structures and phase behaviour of the lipids becomes more surfactant-like with decreasing average solvent polarity, H-bond network density and surface tension. In PAN, all the investigated phospholipids behave like surfactants in water. In EAN they exhibit anomalous phase sequences and unexpected transitions as a function of temperature, while EtAN supports structures that share characteristics with water and EAN. Structures formed are also sensitive to proximity to the lipid chain melting temperature.

4.
Small ; 20(7): e2306011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37806754

ABSTRACT

Video-rate atomic force microscopy (AFM) is used to study the near-surface nanostructure dynamics of the ionic liquid ethylammonium nitrate (EAN) at a highly oriented pyrolytic graphite (HOPG) electrode as a function of potential in real-time for the first time. The effects of varying the surface potential and adding 10 wt% water on the nanostructure diffusion coefficient are probed. For both EAN and the 90 wt% EAN-water mixture, disk-like features ≈9 nm in diameter and 1 nm in height form above the Stern layer at all potentials. The nanostructure diffusion coefficient increases with potential (from OCP -0.5 V to OCP +0.5 V) and with added water. Nanostructure dynamics depends on both the magnitude and direction of the potential change. Upon switching the potential from OCP -0.5 V to OCP +0.5 V, a substantial increase in the diffusion coefficients is observed, likely due to the absence of solvophobic interactions between the nitrate (NO3 - ) anions and the ethylammonium (EA+ ) cations in the near-surface region. When the potential is reversed, EA+ is attracted to the Stern layer to replace NO3 - , but its movement is hindered by solvophobic attractions. The outcomes will aid applications, including electrochemical devices, catalysts, and lubricants.

5.
ACS Nano ; 18(1): 1181-1194, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117206

ABSTRACT

When a surface is immersed in a solution, it usually acquires a charge, which attracts counterions and repels co-ions to form an electrical double layer. The ions directly adsorbed to the surface are referred to as the Stern layer. The structure of the Stern layer normal to the interface was described decades ago, but the lateral organization within the Stern layer has received scant attention. This is because instrumental limitations have prevented visualization of the ion arrangements except for atypical, model, crystalline surfaces. Here, we use high-resolution amplitude modulated atomic force microscopy (AFM) to visualize in situ the lateral structure of Stern layer ions adsorbed to polycrystalline gold, and amorphous silica and gallium nitride (GaN). For all three substrates, when the density of ions in the layer exceeds a system-dependent threshold, correlation effects induce the formation of close packed structures akin to Wigner crystals. Depending on the surface and the ions, the Wigner crystal-like structure can be hexagonally close packed, cubic, or worm-like. The influence of the electrolyte concentration, species, and valence, as well as the surface type and charge, on the Stern layer structures is described. When the system parameters are changed to reduce the Stern layer ion surface excess below the threshold value, Wigner crystal-like structures do not form and the Stern layer is unstructured. For gold surfaces, molecular dynamics (MD) simulations reveal that when sufficient potential is applied to the surface, ion clusters form with dimensions similar to the Wigner crystal-like structures in the AFM images. The lateral Stern layer structures presented, and in particular the Wigner crystal-like structures, will influence diverse applications in chemistry, energy storage, environmental science, nanotechnology, biology, and medicine.

6.
Phys Chem Chem Phys ; 25(45): 31068-31076, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37946570

ABSTRACT

Neutron diffraction with empirical potential structure refinement (EPSR) show the deep eutectic solvent (DES) 1 : 4 choline chloride : butyric acid is amphiphilically nanostructured. Nanostructure results from solvophobic interactions between the alkyl chains of the butyric acid hydrogen bond donor (HBD) and is retained with addition of 10 wt% water. EPSR fits to the diffraction data is used to produce a three-dimensional model of the liquid which is interrogated to reveal the interactions leading to the solvophobic effect, and therefore nanostructure, in this DES at atomic resolution. The model shows electrostatic and hydrogen bond interactions cause the cation, anion and HBD acid group to cluster into a polar domain, from which the acid alkyl chains are solvophobically excluded into theapolar domain. The polar and apolar domains percolate through the liquid in a bicontinuous sponge-like structure. The effect of adding 10 wt% water is probed, revealing that water molecules are sequestered around the cation and anion within the polar domain, while the neat bulk structure is retained. Alkyl chain packing in the apolar domain becomes slightly better-defined indicating water marginally strengthens solvophobic segregation. These findings reveal bulk self-assembled nanostructure can be produced in DESs via an amphiphilic HBD.

7.
ACS Nano ; 17(21): 21567-21584, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37883191

ABSTRACT

The physical properties of ionic liquids (ILs) have led to intense research interest, but for many applications, high viscosity is problematic. Mixing the IL with a diluent that lowers viscosity offers a solution if the favorable IL physical properties are not compromised. Here we show that mixing an IL or IL electrolyte (ILE, an IL with dissolved metal ions) with a nonsolvating fluorous diluent produces a low viscosity mixture in which the local ion arrangements, and therefore key physical properties, are retained or enhanced. The locally concentrated ionic liquids (LCILs) examined are 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM TFSI), 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (HMIM FAP), or 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (BMIM FAP) mixed with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) at 2:1, 1:1, and 1:2 (w/w) IL:TFTFE, as well as the locally concentrated ILEs (LCILEs) formed from 2:1 (w/w) HMIM TFSI-TFTFE with 0.25, 0.5, and 0.75 m lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Rheology and conductivity measurements reveal that the added TFTFE significantly reduces viscosity and increases ionic conductivity, and cyclic voltammetry (CV) reveals minimal reductions in electrochemical windows on gold and carbon electrodes. This is explained by the small- and wide-angle X-ray scattering (S/WAXS) and atomic force microscopy (AFM) data, which show that the local ion nanostructures are largely retained in LCILs and LCILEs in bulk and at gold and graphite electrodes for all potentials investigated.

8.
J Colloid Interface Sci ; 652(Pt A): 749-757, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37582670

ABSTRACT

HYPOTHESIS: The surface-active ionic liquid, 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), has a sponge-like bulk nanostructure consisting of percolating polar and apolar domains formed by the ion charge groups and alkyl chains, respectively. We hypothesise that added water will swell the polar domains and change the liquid nanostructure. EXPERIMENTS: Small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and polarizing optical microscopy (POM) were used to investigate the nanostructure of [BMIm][AOT] as a function of water content. Differential scanning calorimetry (DSC) was employed to probe the thermal transitions of [BMIm][AOT]-water mixtures and the mobility of water molecules. FINDINGS: SAXS, SANS and POM show that at lower water contents, [BMIm][AOT]-water mixtures have a sponge-like nanostructure similar to the pure SAIL, at medium water contents a lamellar phase forms, and at high water contents vesicles form. DSC results reveal that water molecules are supercooled in the lamellar phase. For the first time, results reveal a series of transitions from inverse sponge, to lamellar then to vesicles, for [BMIm][AOT] upon dilution with water.

9.
J Colloid Interface Sci ; 643: 276-281, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37068361

ABSTRACT

HYPOTHESIS: The forces that govern lipid self-assembly ionic liquids are similar to water, but their different balance can result in unexpected behaviour. EXPERIMENTS: The self-assembly behaviour and phase equilibria of two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in the most common protic ionic liquid, ethylammonium nitrate (EAN) have been investigated as function of composition and temperature by small- and wide-angle X-ray scattering (SAXS/WAXS) and small-angle neutron scattering (SANS). FINDINGS: Both lipids form unusual self-assembly structures and show complex and unexpected phase behaviour unlike that seen in water; DSPC undergoes a gel Lß to crystalline Lc phase transition on warming, while POPC forms worm-like micelles L1 upon dilution. This surprising phase behaviour is attributed to the large size of the EAN ions that solvate the lipid headgroup compared to water changing amphiphile packing. Weaker H-bonding between EAN and lipid headgroups also contributes. These results provide new insight for the design of lipid based nanostructured materials in ionic liquids with atypical properties.

10.
Phys Chem Chem Phys ; 25(9): 6808-6816, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36790213

ABSTRACT

Surface active ionic liquids (SAILs) combine useful characteristics of both ionic liquids (ILs) and surfactants, hence are promising candidates for a wide range of applications. However, the effect of SAIL ionic structures on their physicochemical properties remains unclear, which limits their uptake. To address this knowledge gap, in this work we investigated the density, viscosity, surface tension, and corresponding critical micelle concentration in water, as well as gas absorption of SAILs with a variety of cation and anion structures. SAILs containing anions with linear alkyl chains have smaller molar volumes than those with branched alkyl chains, because linear alkyl chains are interdigitated to a greater extent, leading to more compact packing. This interdigitation also results in SAILs being about two orders of magnitude more viscous than comparable conventional ILs. SAILs at the liquid-air interface orient alkyl chains towards the air, leading to low surface tensions closer to n-alkanes than conventional ILs. Critical temperatures of about 900 K could be estimated for all SAILs from their surface tensions. When dissolved in water, SAILs adsorb at the liquid-air interface and lower the surface tension, like conventional surfactants in water, after which micelles form. Molecular simulations show that the micelles are spherical and that lower critical micelle concentrations correspond to the formation of aggregates with a larger number of ion pairs. CO2 and N2 absorption capacities are examined and we conclude that ionic liquids with larger non-polar domains absorb larger quantities of both gases.

11.
Nanoscale Adv ; 5(3): 711-724, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36756511

ABSTRACT

Nano-filler reinforced polymer-based composites have attracted extensive attention in tribology; however, to date, it is still challenging to construct a favorable lubricating system with excellent compatibility, lubricity and durability using nano-filler reinforced polymer-based composites. Herein, sulfonated boron nitride nano-sheets (h-BN@PSDA) are prepared and used as nano-fillers for epoxy resins (EPs), to improve friction and wear along with thermal conductivity. Furthermore, inspired by the lubricating principle and structure of snail mucus, a solvent-free carbon dot-based nanofluid (F-CDs) is fabricated and used for the first time as the lubricant for h-BN@PSDA/EPs. Both poly (4-styrene sulfonate) and polyether amine grafted on the surface of F-CDs contribute to branched structures and multiple interfacial absorption effects. Extraordinarily low friction and wear are detected after long-term sliding. The average coefficient of friction and wear rate of h-BN@PSDA/EPs composites are reduced by 95.25% and 99.42% respectively, in the presence of the F-CD nanofluid, compared to that of EPs. Besides, the added h-BN nano-sheets increase the thermal conductivity (TC) of EPs from 0.178 to 0.194 W (m-1 K-1). The distinguished lubrication performances are likely due to the formation of a hybrid nanostructure of 0D F-CDs and 2D h-BN@PSDA together with the "rolling-sliding" and "self-mending" effects of added F-CDs.

12.
J Phys Chem B ; 127(7): 1490-1498, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36786772

ABSTRACT

Ionic liquids (ILs) have recently emerged as novel classes of solvents that support surfactant self-assembly into micelles, liquid crystals, and microemulsions. Their low volatility and wide liquid stability ranges make them attractive for many diverse applications, especially in extreme environments. However, the number of possible ion combinations makes systematic investigations both challenging and rare; this is further amplified when mixtures are considered, whether with water or other H-bonding components such as those found in deep eutectics. In this Perspective we examine what factors determine amphiphilicity, solvophobicity and solvophilicity, in ILs and related exotic environments, in what ways these differ from water, and how the underlying nanostructure of the liquid itself affects the formation and structure of micelles and other self-assembled materials.

13.
Small ; 19(12): e2204993, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36627266

ABSTRACT

Interest in deep eutectic solvents (DESs), particularly for electrochemical applications, has boomed in the past decade because they are more versatile than conventional electrolyte solutions and are low cost, renewable, and non-toxic. The molecular scale lateral nanostructures as a function of potential at the solid-liquid interface-critical design parameters for the use of DESs as electrochemical solvents-are yet to be revealed. In this work, in situ amplitude modulated atomic force microscopy complemented by molecular dynamics simulations is used to probe the Stern and near-surface layers of the archetypal and by far most studied DES, 1:2 choline chloride:urea (reline), at the highly orientated pyrolytic graphite surface as a function of potential, to reveal highly ordered lateral nanostructures with unprecedented molecular resolution. This detail allows identification of choline, chloride, and urea in the Stern layer on graphite, and in some cases their orientations. Images obtained after the potential is switched from negative to positive show the dynamics of the Stern layer response, revealing that several minutes are required to reach equilibrium. These results provide valuable insight into the nanostructure and dynamics of DESs at the solid-liquid interface, with implications for the rational design of DESs for interfacial applications.

14.
J Colloid Interface Sci ; 630(Pt B): 658-665, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36343557

ABSTRACT

HYPOTHESIS: The dynamics of the self-assembled liquid nanostructure of the ionic liquids (ILs) near a mica surface can be determined from video-rate atomic force microscopy (AFM) data. EXPERIMENTS: Video-rate AFM has been used to record the nanostructure dynamics of two most widely studied ILs, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM TFSI) and ethylammonium nitrate (EAN), as well as EAN-water mixtures, above a model anode, mica. Diffusion coefficients were extracted from the AFM videos using dynamic differential microscopy and direct tracking. FINDINGS: Video rate AFM is able to record the movement of the IL nanostructure. This is the first time that any liquid has been directly visualized at a scale of 10 nm × 10 nm in real-time. Diffusion coefficients determined from AFM videos reveal IL nanostructures near surfaces diffuse orders of magnitude more slowly than individual ions in the bulk. Thus, rather than free-flowing liquid, the near-surface nanostructure is better conceptualized as self-assembled aggregates of IL ions diffusing slowly over the cation-rich Stern layer, akin to adsorbed surfactant micelles in aqueous systems. This new and surprising insight affects wide-ranging processes involving the interfacial dynamics of concentrated electrolytes.

15.
J Colloid Interface Sci ; 630(Pt A): 931-939, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36308988

ABSTRACT

HYPOTHESIS: The ion structure of surface active ionic liquids (SAILs), i.e. ion charge group and alkyl chain structure, controls their bulk and interfacial nanostructure and the electrochemical properties near an electrode. EXPERIMENTS: The structures in the bulk and at the interface were investigated by small and wide-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), respectively. An investigation was performed using cyclic voltammetry. FINDINGS: All SAILs show pronounced sponge-like bulk nanostructure. For the first time, the bulk nanostructures of SAILs are found to change from anion bilayer structures to cation-anion interdigitated structures as the ion structures change from short alkyl chain cations and linear alkyl chain anions to long alkyl chain cations and branched alkyl chain anions. The bulk nanostructure packs more compactly at a higher temperature, likely due to the conformational change and enhanced interdigitations of alkyl chains. The thicknesses of SAIL interfacial layers align with the repeat distances of the bulk nanostructure, similar to conventional ILs with long cation alkyl chains. All SAILs have wide electrochemical windows >4 V, which are not affected by the alkyl chain structure and cation charge groups.


Subject(s)
Ionic Liquids , Nanostructures , Ionic Liquids/chemistry , Scattering, Small Angle , Electrochemistry , X-Ray Diffraction , Nanostructures/chemistry , Anions/chemistry , Cations
16.
ACS Appl Mater Interfaces ; 14(42): 48091-48105, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36222465

ABSTRACT

Due to their excellent biocompatibility, outstanding mechanical properties, high strength-to-weight ratio, and good corrosion resistance, titanium (Ti) alloys are extensively used as implant materials in artificial joints. However, Ti alloys suffer from poor wear resistance, resulting in a considerably short lifetime. In this study, we demonstrate that the chemical self-assembly of novel two-dimensional (2D) diamond nanosheet coatings on Ti alloys combined with natural silk fibroin used as a novel lubricating fluid synergistically results in excellent friction and wear performance. Linear-reciprocating sliding tests verify that the coefficient of friction and the wear rate of the diamond nanosheet coating under silk fibroin lubrication are reduced by 54 and 98%, respectively, compared to those of the uncoated Ti alloy under water lubrication. The lubricating mechanism of the newly designed system was revealed by a detailed analysis of the involved microstructural and chemical changes. The outstanding tribological behavior was attributed to the establishment of artificial joint lubrication induced by the cross binding between the diamond nanosheets and silk fibroin. Additionally, excellent biocompatibility of the lubricating system was verified by cell viability, which altogether paves the way for the application of diamond coatings in artificial Ti joint implants.


Subject(s)
Fibroins , Fibroins/chemistry , Diamond , Titanium/chemistry , Materials Testing , Alloys/chemistry , Corrosion , Water , Surface Properties
17.
J Am Chem Soc ; 144(31): 14112-14120, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35901278

ABSTRACT

Non-viral delivery is an important strategy for selective and efficient gene therapy, immunization, and RNA interference, which overcomes problems of genotoxicity and inherent immunogenicity associated with viral vectors. Liposomes and polymers are compelling candidates as carriers for intracellular, non-viral delivery, but maximal efficiencies of around 1% have been reported for the most advanced non-viral carriers. Here, we develop a library of dendronized bottlebrush polymers with controlled defects, displaying a level of precision surpassed only by biological molecules like DNA, RNA, and proteins. We test concurrent and competitive delivery of DNA and show for the first time that, while intracellular communication is thought to be an exclusively biomolecular phenomenon, such communication between synthetic macromolecular complexes can also take place. Our findings challenge the assumption that delivery agents behave as bystanders that enable transfection by passive intracellular release of genetic cargo and improve upon coarse strategies in intracellular carrier design lacking control over polymer sequence, architecture, and composition, leading to a hit-or-miss outcome. Understanding the communication that takes place between macromolecules will help improve the design of non-viral delivery agents and facilitate translation of genome engineering, vaccines, and nucleic acid-based therapies.


Subject(s)
Liposomes , Polymers , Cell Communication , DNA/metabolism , Gene Transfer Techniques , Liposomes/metabolism , Transfection
18.
Phys Chem Chem Phys ; 24(7): 4526-4532, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35119064

ABSTRACT

The conformation of the polycation in the prototypical polymeric ionic liquid (PIL) poly(3-methyl-1-aminopropylimidazolylacrylamide) bis(trifluoromethylsulfonyl)imide (poly(3MAPIm)TFSI) was probed using small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) at 25 °C and 80 °C. Poly(3MAPIm)TFSI contains microvoids which lead to intense low q scattering that can be mitigated using mixtures of hydrogen- and deuterium-rich materials, allowing determination of the polycation conformation and radius of gyration (Rg). In the pure PIL, the polycation adopts a random coil conformation with Rg = 52 ± 0.5 Å. In contrast to conventional polymer melts, the pure PIL is not a theta solvent for the polycation. The TFSI- anions, which comprise 48% v/v of the PIL, are strongly attracted to the polycation and act like small solvent molecules which leads to chain swelling analogous to an entangled, semi-dilute, or concentrated polymer solution in a good solvent.

19.
J Colloid Interface Sci ; 616: 121-128, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35193052

ABSTRACT

HYPOTHESIS: Popular deep eutectic solvents (DESs) typically lack amphiphilic molecules and ions and therefore do not have the useful self-assembled nanostructures prevalent in many ionic liquids. We hypothesise that nanostructure in DESs can be induced via an amphiphilic hydrogen bond donor (HBD), and that nanostructure becomes better defined with HBD chain length. EXPERIMENTS: The structure of DESs formed from choline chloride mixed with either butyric acid (ChCl/BuOOH) or hexanoic acid (ChCl/HeOOH) in a 1:4 M ratio were studied using atomic force microscopy (AFM) imaging, force curves, and friction measurements combined with bulk rheology. FINDINGS: DESs formed with both the C4 and C6 acids are nanostructured. As the length of the acid group is increased from C4 to C6, AFM images reveal the nanostructure becomes larger and better defined due to the longer acid chain, and AFM force curves show the interfacial nanostructure extends further from the surface. Self-assembled nanostructure in these systems is a consequence of choline cations, chloride anions, and acid alcohol groups clustering together due to electrostatic attractions and hydrogen bonding to form polar domains. Acid alkyl chains are solvophobically excluded from the polar domains and aggregate into apolar domains.


Subject(s)
Deep Eutectic Solvents , Nanostructures , Choline/chemistry , Hydrogen Bonding , Solvents/chemistry
20.
ACS Phys Chem Au ; 2(6): 515-526, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36855608

ABSTRACT

The electrochemical oxygen reduction reaction is vital for applications such as fuel cells, metal air batteries and for oxygen gas sensing. Oxygen undergoes a 1-electron reduction process in dry ionic liquids (ILs) to form the electrogenerated superoxide ion that is solvated and stabilized by IL cations. In this work, the oxygen/superoxide (O2/O2 •-) redox couple has been used to understand the effect of mixing ILs with different cations in the context of developing designer electrolytes for oxygen sensing, by employing cyclic voltammetry at both gold and platinum electrodes. Different cations with a range of sizes, geometries and aromatic/aliphatic character were studied with a common bis(trifluoromethylsulfonyl)imide ([NTf2]-) anion. Diethylmethylsulfonium ([S2,2,1]+), N-butyl-N-methylpyrrolidinum ([C4mpyrr]+) and tetradecyltrihexylphosphonium ([P14,6,6,6]+) cations were mixed with a common 1-butyl-3-methylimidazolium ([C4mim]+) cation at mole fractions (x) of [C4mim]+ of 0, 0.2, 0.4, 0.6, 0.8, and 1. Both the redox kinetics and thermodynamics were found to be highly dependent on the cation structure and the electrode material used. Large deviations from "ideal" mixtures were observed for mixtures of [C4mim][NTf2] with [C4mpyrr][NTf2] on gold electrodes, suggesting a much higher amount of [C4mim]+ ions near the electrode surface despite the large excess of [C4mpyrr]+ in the bulk. The electrical double layer structure was probed for a mixture of [C4mim]0.2[C4mpyrr]0.8[NTf2] using atomic force microscopy measurements on Au, revealing that the first layer was more like [C4mim][NTf2] than [C4mpyrr][NTf2]. Unusually fast kinetics for O2/O2 •- in mixtures of [C4mim]+ with [P14,6,6,6]+ were also observed in the electrochemistry results, which warrants further follow-up studies to elucidate this promising behavior. Overall, it is important to understand the effect on the kinetic and thermodynamic properties of electrochemical reactions when mixing solvents, to aid in the creation of designer electrolytes with favorable properties for their intended application.

SELECTION OF CITATIONS
SEARCH DETAIL
...