Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Pediatr ; 177(10): 1007-1008, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37548985
2.
Int J Neonatal Screen ; 7(3)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34287233

ABSTRACT

The Wisconsin Newborn Screening (NBS) Program began screening for severe combined immunodeficiency (SCID) in 2008, using real-time PCR to quantitate T-cell receptor excision circles (TRECs) in DNA isolated from dried blood NBS specimens. Prompted by the observation that there were disproportionately more screening-positive cases in premature infants, we performed a study to assess whether there is a difference in TRECs between full-term and preterm newborns. Based on de-identified SCID data from 1 January to 30 June 2008, we evaluated the TRECs from 2510 preterm newborns (gestational age, 23-36 weeks) whose specimens were collected ≤72 h after birth. The TRECs from 5020 full-term newborns were included as controls. The relationship between TRECs and gestational age in weeks was estimated using linear regression analysis. The estimated increase in TRECs for every additional week of gestation is 9.60%. The 95% confidence interval is 8.95% to 10.25% (p ≤ 0.0001). Our data suggest that TRECs increase at a steady rate as gestational age increases. These results provide rationale for Wisconsin's existing premature infant screening procedure of recommending repeat NBS following an SCID screening positive in a premature infant instead of the flow cytometry confirmatory testing for SCID screening positives in full-term infants.

3.
J Community Genet ; 10(4): 447-451, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30721391

ABSTRACT

The Iowa Newborn Screening (NBS) Program began screening for very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) in 2003. Untreated VLCAD can lead to liver failure, heart failure, and death. Current confirmatory testing recommendations by the American College of Medical Genetics (ACMG) for VLCAD list molecular and functional analysis (i.e., fibroblast fatty acid oxidation probe) as optional. This can lead to misclassification of VLCAD carriers as false positives. Iowa implemented a comprehensive VLCAD confirmatory testing algorithm at the beginning of 2016 that included both molecular and fibroblast analysis. Here, we compare the historic multi-algorithmic confirmatory testing protocol (2005-2016) to this comprehensive protocol (2016-2017). A metabolic specialist reviewed all medical records and NBS data for each out-of-range VLCAD that fell in each testing period. During the comprehensive testing period, 48,651 specimens were screened. Thirteen individuals with out-of-range C14:1 results were classified as follows after review: ten carriers, zero true positives, zero false positives, zero lost to follow-up, and four unable to assess carrier status. During the variable testing period, a total of 486,566 specimens were screened. Eighty-five individuals with out-of-range C14:1 were classified as follows: 45 carriers, two true positives, four false positives, four lost to follow-up, and 30 unable to assess carrier status. Our findings suggest that many out-of-range VLCAD cases that do not receive molecular confirmatory testing could be carriers mistakenly classified as false positives. We recommend comprehensive molecular and functional testing for all children with out-of-range VLCAD NBS results.

4.
Genet Med ; 18(3): 231-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25674778

ABSTRACT

PURPOSE: Many regions have implemented newborn screening (NBS) for cystic fibrosis (CF) using a limited panel of cystic fibrosis transmembrane regulator (CFTR) mutations after immunoreactive trypsinogen (IRT) analysis. We sought to assess the feasibility of further improving the screening using next-generation sequencing (NGS) technology. METHODS: An NGS assay was used to detect 162 CFTR mutations/variants characterized by the CFTR2 project. We used 67 dried blood spots (DBSs) containing 48 distinct CFTR mutations to validate the assay. NGS assay was retrospectively performed on 165 CF screen-positive samples with one CFTR mutation. RESULTS: The NGS assay was successfully performed using DNA isolated from DBSs, and it correctly detected all CFTR mutations in the validation. Among 165 screen-positive infants with one CFTR mutation, no additional disease-causing mutation was identified in 151 samples consistent with normal sweat tests. Five infants had a CF-causing mutation that was not included in this panel, and nine with two CF-causing mutations were identified. CONCLUSION: The NGS assay was 100% concordant with traditional methods. Retrospective analysis results indicate an IRT/NGS screening algorithm would enable high sensitivity, better specificity and positive predictive value (PPV). This study lays the foundation for prospective studies and for introducing NGS in NBS laboratories.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , High-Throughput Nucleotide Sequencing/methods , Neonatal Screening/methods , Sequence Analysis, DNA/methods , Cystic Fibrosis/genetics , Dried Blood Spot Testing , Feasibility Studies , Genetic Predisposition to Disease , Humans , Infant, Newborn , Mutation , Retrospective Studies
5.
Mol Genet Genomics ; 281(3): 273-88, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19104839

ABSTRACT

Carrot is the most economically important member of the Apiaceae family and a major source of provitamin A carotenoids in the human diet. However, carrot molecular resources are relatively underdeveloped, hampering a number of genetic studies. Here, we report on the synthesis and characterization of a bacterial artificial chromosome (BAC) library of carrot. The library is 17.3-fold redundant and consists of 92,160 clones with an average insert size of 121 kb. To provide an overview of the composition and organization of the carrot nuclear genome we generated and analyzed 2,696 BAC-end sequences (BES) from nearly 2,000 BACs, totaling 1.74 Mb of BES. This analysis revealed that 14% of the BES consists of known repetitive elements, with transposable elements representing more than 80% of this fraction. Eleven novel carrot repetitive elements were identified, covering 8.5% of the BES. Analysis of microsatellites showed a comparably low frequency for these elements in the carrot BES. Comparisons of the translated BES with protein databases indicated that approximately 10% of the carrot genome represents coding sequences. Moreover, among eight dicot species used for comparison purposes, carrot BES had highest homology to protein-coding sequences from tomato. This deep-coverage library will aid carrot breeding and genetics.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Daucus carota/genetics , Gene Library , Base Sequence , DNA Primers/genetics , DNA, Plant/genetics , Databases, Nucleic Acid , Expressed Sequence Tags , Minisatellite Repeats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...