Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cancer Cell ; 33(2): 274-291.e8, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29438697

ABSTRACT

Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Animals , Gene Expression Regulation, Leukemic , Mice, Knockout , Myeloid Cells/metabolism , Signal Transduction/genetics , Stem Cells
2.
Blood ; 131(15): 1712-1719, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29339402

ABSTRACT

Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.


Subject(s)
Bone Marrow/metabolism , Erythropoiesis , Myelopoiesis , Receptors, Notch/metabolism , Signal Transduction , Stress, Physiological , Animals , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice , Mice, Transgenic , Receptors, Notch/genetics
3.
J Exp Med ; 214(7): 2005-2021, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28637883

ABSTRACT

Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD-driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology.


Subject(s)
Cell Proliferation/genetics , Hematopoietic Stem Cells/metabolism , Mutation , Stem Cell Niche/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cells, Cultured , Etanercept/pharmacology , Gene Expression Profiling/methods , Hematopoietic Stem Cells/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , Single-Cell Analysis/methods , Tandem Repeat Sequences/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
4.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27695000

ABSTRACT

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Subject(s)
Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Lymphoid Progenitor Cells/physiology , Myeloid Progenitor Cells/physiology , Receptors, Notch/metabolism , T-Lymphocytes/physiology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Movement , Cells, Cultured , Fetus , Gene Expression Regulation, Developmental , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction
6.
J Exp Med ; 211(2): 181-8, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24493804

ABSTRACT

The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type.


Subject(s)
Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/physiology , Erythropoiesis/physiology , Erythropoietin/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Multipotent Stem Cells/cytology , Multipotent Stem Cells/physiology , Animals , Cell Lineage , Colony-Forming Units Assay , Erythropoietin/genetics , Gene Expression Profiling , Hematopoietic Stem Cell Transplantation , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Transgenic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Cell Stem Cell ; 13(5): 535-48, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24054998

ABSTRACT

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Subject(s)
Hematopoietic Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Female , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Hematopoietic Stem Cells/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Mice , Myeloid Cells/cytology , Myeloid Cells/metabolism , Polymerase Chain Reaction
8.
Nature ; 502(7470): 232-6, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23934107

ABSTRACT

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Subject(s)
Blood Platelets/cytology , Cell Differentiation , Hematopoietic Stem Cells/cytology , Animals , Cell Lineage/genetics , Female , Gene Expression Regulation, Developmental , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Lymphocytes/cytology , Male , Mice , Mice, Inbred C57BL
9.
Cell Rep ; 3(6): 1766-76, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23727242

ABSTRACT

Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies.


Subject(s)
Leukemia, Myeloid, Acute/pathology , Multipotent Stem Cells/cytology , Myeloid Cells/cytology , fms-Like Tyrosine Kinase 3/physiology , Animals , Cell Differentiation/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Flow Cytometry/methods , Gene Expression , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Microarray Analysis , Multipotent Stem Cells/immunology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/pathology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Signal Transduction , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
10.
J Virol ; 87(14): 7805-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23658452

ABSTRACT

To support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed. There was no significant difference (P > 0.05) between the levels of neutralizing antibody in animals vaccinated with a single immunization of Acam2000 (132 U/ml) and the prime-boost Imvamune regime (69 U/ml) prior to challenge with monkeypox virus. After challenge, there was evidence of viral excretion from the throats of 2 of 6 animals in the prime-boost Imvamune group, whereas there was no confirmation of excreted live virus in the Acam2000 group. This evaluation of different human smallpox vaccines in cynomolgus macaques helps to provide information about optimal vaccine strategies in the absence of human challenge studies.


Subject(s)
Immunization/methods , Orthopoxvirus/immunology , Poxviridae Infections/prevention & control , Smallpox Vaccine/pharmacology , Animals , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Macaca fascicularis , Male , Real-Time Polymerase Chain Reaction , Vaccines, Attenuated/pharmacology , Virus Shedding/immunology
11.
Blood ; 121(20): 4156-65, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23535062

ABSTRACT

The association between somatic JAK2 mutation and myeloproliferative neoplasms (MPNs) is now well established. However, because JAK2 mutations are associated with heterogeneous clinical phenotypes and often occur as secondary genetic events, some aspects of JAK2 mutation biology remain to be understood. We recently described a germline JAK2V617I mutation in a family with hereditary thrombocytosis and herein characterize the hematopoietic and signaling impact of JAK2V617I. Through targeted sequencing of MPN-associated mutations, exome sequencing, and clonality analysis, we demonstrate that JAK2V617I is likely to be the sole driver mutation in JAK2V617I-positive individuals with thrombocytosis. Phenotypic hematopoietic stem cells (HSCs) were increased in the blood and bone marrow of JAK2V617I-positive individuals and were sustained at higher levels than controls after xenotransplantation. In signaling and transcriptional assays, JAK2V617I demonstrated more activity than wild-type JAK2 but substantially less than JAK2V617F. After cytokine stimulation, JAK2V617I resulted in markedly increased downstream signaling compared with wild-type JAK2 and comparable with JAK2V617F. These findings demonstrate that JAK2V617I induces sufficient cytokine hyperresponsiveness in the absence of other molecular events to induce a homogeneous MPN-like phenotype. We also provide evidence that the JAK2V617I mutation may expand the HSC pool, providing insights into both JAK2 mutation biology and MPN disease pathogenesis.


Subject(s)
Germ-Line Mutation/physiology , Hematopoiesis/genetics , Janus Kinase 2/genetics , Adult , Amino Acid Substitution/physiology , Animals , Cells, Cultured , Family , Female , Hematopoiesis/physiology , Humans , Isoleucine/genetics , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/physiopathology , Valine/genetics
12.
Proc Natl Acad Sci U S A ; 109(43): 17579-84, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23045701

ABSTRACT

The 40-fold increase in childhood megakaryocyte-erythroid and B-cell leukemia in Down syndrome implicates trisomy 21 (T21) in perturbing fetal hematopoiesis. Here, we show that compared with primary disomic controls, primary T21 fetal liver (FL) hematopoietic stem cells (HSC) and megakaryocyte-erythroid progenitors are markedly increased, whereas granulocyte-macrophage progenitors are reduced. Commensurately, HSC and megakaryocyte-erythroid progenitors show higher clonogenicity, with increased megakaryocyte, megakaryocyte-erythroid, and replatable blast colonies. Biased megakaryocyte-erythroid-primed gene expression was detected as early as the HSC compartment. In lymphopoiesis, T21 FL lymphoid-primed multipotential progenitors and early lymphoid progenitor numbers are maintained, but there was a 10-fold reduction in committed PreproB-lymphoid progenitors and the functional B-cell potential of HSC and early lymphoid progenitor is severely impaired, in tandem with reduced early lymphoid gene expression. The same pattern was seen in all T21 FL samples and no samples had GATA1 mutations. Therefore, T21 itself causes multiple distinct defects in FL myelo- and lymphopoiesis.


Subject(s)
Down Syndrome , Hematopoietic Stem Cells/pathology , Liver/embryology , Cell Differentiation , Cell Lineage , Flow Cytometry , Gene Expression Profiling , Humans , Liver/pathology
13.
Blood ; 120(12): 2412-6, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22869792

ABSTRACT

MicroRNAs (miRs) are involved in many aspects of normal and malignant hematopoiesis, including hematopoietic stem cell (HSC) self-renewal, proliferation, and terminal differentiation. However, a role for miRs in the generation of the earliest stages of lineage committed progenitors from HSCs has not been identified. Using Dicer inactivation, we show that the miR complex is not only essential for HSC maintenance but is specifically required for their erythroid programming and subsequent generation of committed erythroid progenitors. In bipotent pre-MegEs, loss of Dicer up-regulated transcription factors preferentially expressed in megakaryocyte progenitors (Gata2 and Zfpm1) and decreased expression of the erythroid-specific Klf1 transcription factor. These results show a specific requirement for Dicer in acquisition of erythroid lineage programming and potential in HSCs and their subsequent erythroid lineage differentiation, and in particular indicate a role for the miR complex in achieving proper balance of lineage-specific transcriptional regulators necessary for HSC multilineage potential to be maintained.


Subject(s)
Cell Lineage , DEAD-box RNA Helicases/physiology , Erythroid Cells/cytology , Erythroid Cells/metabolism , Hematopoietic Stem Cells/cytology , Megakaryocyte Progenitor Cells/cytology , Ribonuclease III/physiology , Animals , Biomarkers/metabolism , Blotting, Western , Cell Differentiation , DEAD-box RNA Helicases/antagonists & inhibitors , Gene Expression Profiling , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Integrases/metabolism , Megakaryocyte Progenitor Cells/metabolism , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Ribonuclease III/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Article in English | MEDLINE | ID: mdl-22344248

ABSTRACT

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Subject(s)
B-Lymphocytes/cytology , Cell Lineage/immunology , Lymphoid Progenitor Cells/cytology , Myeloid Cells/cytology , Precursor Cells, B-Lymphoid/cytology , T-Lymphocytes/cytology , Animals , Cell Separation , Flow Cytometry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Lymphoid Progenitor Cells/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Thymus Gland/cytology
15.
Acute Med ; 9(3): 114-7, 2010.
Article in English | MEDLINE | ID: mdl-21597591

ABSTRACT

This paper describes how a Foundation Trust was able to meet emergency access targets. The Acute Medical Unit (AMU) was expanded from 29 to 81 beds and patients with expected length of stay (LOS( of less than 5 days were managed by the acute medical team only. Acute physicians provided twice-daily ward rounds on the expanded facility, including weekends, supported by specialist teams, allied healthcare professionals and investigation facilities. Within three weeks, the admission process had improved dramatically. Average LOS had decreased by 1.3 days and bed-occupancy was reduced from 98% to 91%. Having failed to achieve the 98% target for 4 consecutive months prior to these changes, the target was subsequently attained consistently. Re-admission rates, percentage mortality rate and numbers of complaints were unaffected.

SELECTION OF CITATIONS
SEARCH DETAIL
...