Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Syst Biol Appl ; 8(1): 25, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35859153

ABSTRACT

Topological network alignment aims to align two networks node-wise in order to maximize the observed common connection (edge) topology between them. The topological alignment of two protein-protein interaction (PPI) networks should thus expose protein pairs with similar interaction partners allowing, for example, the prediction of common Gene Ontology (GO) terms. Unfortunately, no network alignment algorithm based on topology alone has been able to achieve this aim, though those that include sequence similarity have seen some success. We argue that this failure of topology alone is due to the sparsity and incompleteness of the PPI network data of almost all species, which provides the network topology with a small signal-to-noise ratio that is effectively swamped when sequence information is added to the mix. Here we show that the weak signal can be detected using multiple stochastic samples of "good" topological network alignments, which allows us to observe regions of the two networks that are robustly aligned across multiple samples. The resulting network alignment frequency (NAF) strongly correlates with GO-based Resnik semantic similarity and enables the first successful cross-species predictions of GO terms based on topology-only network alignments. Our best predictions have an AUPR of about 0.4, which is competitive with state-of-the-art algorithms, even when there is no observable sequence similarity and no known homology relationship. While our results provide only a "proof of concept" on existing network data, we hypothesize that predicting GO terms from topology-only network alignments will become increasingly practical as the volume and quality of PPI network data increase.


Subject(s)
Computational Biology , Protein Interaction Maps , Computational Biology/methods , Gene Ontology , Oligopeptides , Protein Interaction Maps/genetics , Proteins/genetics , Proteins/metabolism
2.
Conserv Biol ; 25(3): 450-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21083762

ABSTRACT

The 2010 biodiversity target agreed by signatories to the Convention on Biological Diversity directed the attention of conservation professionals toward the development of indicators with which to measure changes in biological diversity at the global scale. We considered why global biodiversity indicators are needed, what characteristics successful global indicators have, and how existing indicators perform. Because monitoring could absorb a large proportion of funds available for conservation, we believe indicators should be linked explicitly to monitoring objectives and decisions about which monitoring schemes deserve funding should be informed by predictions of the value of such schemes to decision making. We suggest that raising awareness among the public and policy makers, auditing management actions, and informing policy choices are the most important global monitoring objectives. Using four well-developed indicators of biological diversity (extent of forests, coverage of protected areas, Living Planet Index, Red List Index) as examples, we analyzed the characteristics needed for indicators to meet these objectives. We recommend that conservation professionals improve on existing indicators by eliminating spatial biases in data availability, fill gaps in information about ecosystems other than forests, and improve understanding of the way indicators respond to policy changes. Monitoring is not an end in itself, and we believe it is vital that the ultimate objectives of global monitoring of biological diversity inform development of new indicators.


Subject(s)
Biodiversity , Conservation of Natural Resources/trends , Animals , Endangered Species
SELECTION OF CITATIONS
SEARCH DETAIL
...