Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cells ; 8(7)2019 07 11.
Article in English | MEDLINE | ID: mdl-31336778

ABSTRACT

Biosensors on the membrane of the vascular endothelium are responsible for sensing mechanical and chemical signals in the blood. Transduction of these stimuli into intracellular signaling cascades regulate cellular processes including ion transport, gene expression, cell proliferation, and/or cell death. The primary cilium is a well-known biosensor of shear stress but its role in sensing extracellular pH change has never been examined. As a cellular extension into the immediate microenvironment, the cilium could be a prospective sensor for changes in pH and regulator of acid response in cells. We aim to test our hypothesis that the primary cilium plays the role of an acid sensor in cells using vascular endothelial and embryonic fibroblast cells as in vitro models. We measure changes in cellular pH using pH-sensitive 2',7'-biscarboxyethy1-5,6-carboxyfluorescein acetoxy-methylester (BCECF) fluorescence and mitogen-activated protein kinase (MAPK) activity to quantify responses to both extracellular pH (pHo) and intracellular pH (pHi) changes. Our studies show that changes in pHo affect pHi in both wild-type and cilia-less Tg737 cells and that the kinetics of the pHi response are similar in both cells. Acidic pHo or pHi was observed to change the length of primary cilia in wild-type cells while the cilia in Tg737 remained absent. Vascular endothelial cells respond to acidic pH through activation of ERK1/2 and p38-mediated signaling pathways. The cilia-less Tg737 cells exhibit delayed responsiveness to pHo dependent and independent pHi acidification as depicted in the phosphorylation profile of ERK1/2 and p38. Otherwise, intracellular pH homeostatic response to acidic pHo is similar between wild-type and Tg737 cells, indicating that the primary cilia may not be the sole sensor for physiological pH changes. These endothelial cells respond to pH changes with a predominantly K+-dependent pHi recovery mechanism, regardless of ciliary presence or absence.


Subject(s)
Cilia/metabolism , Endothelial Cells/cytology , Animals , Cells, Cultured , Hydrogen-Ion Concentration , MAP Kinase Signaling System
2.
Front Physiol ; 8: 677, 2017.
Article in English | MEDLINE | ID: mdl-28979210

ABSTRACT

Hypoxic environments at high altitude have significant effects on kidney injury. Following injury, renal primary cilia display length alterations. Primary cilia are mechanosensory organelles that regulate tubular architecture. The effect of hypoxia on cilia length is still controversial in cultured cells, and no corresponding in vivo study exists. Using fetal and adult sheep, we here study the effect of chronic hypobaric hypoxia on the renal injury, intracellular calcium signaling and the relationship between cilia length and cilia function. Our results show that although long-term hypoxia induces renal fibrosis in both fetal and adult kidneys, fetal kidneys are more susceptible to hypoxia-induced renal injury. Unlike hypoxic adult kidneys, hypoxic fetal kidneys are characterized by interstitial edema, tubular disparition and atrophy. We also noted that there is an increase in the cilia length as well as an increase in the cilia function in the hypoxic fetal proximal and distal collecting epithelia. Hypoxia, however, has no significant effect on primary cilia in the adult kidneys. Increased cilia length is also associated with greater flow-induced intracellular calcium signaling in renal epithelial cells from hypoxic fetuses. Our studies suggest that while hypoxia causes renal fibrosis in both adult and fetal kidneys, hypoxia-induced alteration in cilia length and function are specific to more severe renal injuries in fetal hypoxic kidneys.

3.
Int Educ Res J ; 2(12): 91-97, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28529994

ABSTRACT

Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.

4.
Int J Pharma Res Rev ; 5(3): 51-58, 2016 Mar.
Article in English | MEDLINE | ID: mdl-29796385

ABSTRACT

Regulation of pH is critical for physiological processes. Maintenance of acid-base homeostasis is tightly regulated by the renal and respiratory systems. However, fluctuations in extracellular pH are also sensed by other organ systems. Ion transporter activity to modify the amount of acid (H+ and CO2) and bicarbonate (HCO3-) is therefore actively maintained within the kidney and lung. This review describes acid-base disorders (acidosis and alkalosis) and highlights the importance of pH sensors and ion transporters that may be potential therapeutic targets for treatment of acid-base disorders. Specifically, the renal pH sensors proline-rich tyrosine kinase-2 (Pyk2) and G-protein coupled receptor-4 (GPR4) are discussed here.

5.
Front Physiol ; 6: 103, 2015.
Article in English | MEDLINE | ID: mdl-25932013

ABSTRACT

Activation of dopamine receptor type-5 (DR5) has been known to reduce systemic blood pressure, most likely by increasing renal vasodilation and enhancing natriuresis in the kidney. However, the mechanism of DR5 in natriuresis and vasodilation was not clearly known. We have previously shown that DR5 is localized to primary cilia of proximal renal epithelial and vascular endothelial cells. We here show that selective activation of DR5 specifically induces calcium influx only in the primary cilia, whereas non-selective activation of dopamine receptor induces calcium fluxes in both cilioplasm and cytoplasm. Cilia-independent signaling induced by thrombin only shows calcium signaling within cytoplasm. Furthermore, calcium activation in the cilioplasm by DR5 increases length and mechanosensory function of primary cilia, leading to a greater response to fluid-shear stress. We therefore propose a new mechanism by which DR5 induces vasodilation via chemical and mechanical properties that are specific to primary cilia.

6.
Cell Mol Life Sci ; 72(12): 2415-29, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25650235

ABSTRACT

Dysfunction of many ciliary proteins has been linked to a list of diseases, from cystic kidney to obesity and from hypertension to mental retardation. We previously proposed that primary cilia are unique communication organelles that function as microsensory compartments that house mechanosensory molecules. Here we report that primary cilia exhibit membrane swellings or ciliary bulbs, which based on their unique ultrastructure and motility, could be mechanically regulated by fluid-shear stress. Together with the ultrastructure analysis of the swelling, which contains monosialodihexosylganglioside (GM3), our results show that ciliary bulb has a distinctive set of functional proteins, including GM3 synthase (GM3S), bicaudal-c1 (Bicc1), and polycystin-2 (PC2). In fact, results from our cilia isolation demonstrated for the first time that GM3S and Bicc1 are members of the primary cilia proteins. Although these proteins are not required for ciliary membrane swelling formation under static condition, fluid-shear stress induced swelling formation is partially modulated by GM3S. We therefore propose that the ciliary bulb exhibits a sensory function within the mechano-ciliary structure. Overall, our studies provided an important step towards understanding the ciliary bulb function and structure.


Subject(s)
Cell Membrane/physiology , Cilia/physiology , Epithelial Cells/metabolism , Kidney/metabolism , Mechanotransduction, Cellular/physiology , RNA-Binding Proteins/metabolism , Sialyltransferases/metabolism , TRPP Cation Channels/metabolism , Animals , Epithelial Cells/cytology , Image Processing, Computer-Assisted , Immunoblotting , Kidney/cytology , RNA, Small Interfering/genetics , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Sialyltransferases/antagonists & inhibitors , Sialyltransferases/genetics , Swine , TRPP Cation Channels/antagonists & inhibitors , TRPP Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...