Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 360: 142447, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801901

ABSTRACT

Natural and human-induced toxic elements can accumulate in the environment, posing significant risks to human health and ecosystems. This study explores cave bat guano, an unconventional and relatively under-researched environmental repository, to reveal historical pollution trends and sources. Through trace elements analysis of a 1.5-m-thick guano deposit from Zidita Cave (Romania), we track changes in mining and metallurgy from 1000 CE-2012. We identified substantial pollution primarily from porphyry copper and Au-Ag-Te mines, but also impacts from usage of leaded gasoline and agricultural practices. Our record shows disruptions caused by the Bubonic plague around 1250 CE and a major surge âˆ¼ 1500 CE. After the decline triggered by the European silver market collapse in 1525 CE, our study reveals a brief mining revival. This resurgence was followed by a continuous decline lasting until the early 1800s, driven by socio-economic upheavals and recurrent outbreaks of the bubonic plagues. The Industrial Revolution sparked prolonged growth that lasted until 1989 CE, only briefly interrupted by the Great Depression and World War II. Consequently, cave bat guano proves to be a critical resource for understanding spatial pollution patterns, both locally and regionally, and for identifying specific pollution sources.


Subject(s)
Caves , Environmental Monitoring , Mining , Trace Elements , Trace Elements/analysis , Animals , Chiroptera , Anthropogenic Effects , History, 18th Century , History, 15th Century , History, Medieval , History, 17th Century , History, 19th Century , History, 20th Century , History, Ancient , Environmental Pollution/statistics & numerical data , Metallurgy , Humans
2.
Nat Commun ; 13(1): 4370, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902581

ABSTRACT

Treatment with ß-lactam antibiotics, particularly cephalosporins, is a major risk factor for Clostridioides difficile infection. These broad-spectrum antibiotics irreversibly inhibit penicillin-binding proteins (PBPs), which are serine-based enzymes that assemble the bacterial cell wall. However, C. difficile has four different PBPs (PBP1-3 and SpoVD) with various roles in growth and spore formation, and their specific links to ß-lactam resistance in this pathogen are underexplored. Here, we show that PBP2 (known to be essential for vegetative growth) is the primary bactericidal target for ß-lactams in C. difficile. PBP2 is insensitive to cephalosporin inhibition, and this appears to be the main basis for cephalosporin resistance in this organism. We determine crystal structures of C. difficile PBP2, alone and in complex with ß-lactams, revealing unique features including ligand-induced conformational changes and an active site Zn2+-binding motif that influences ß-lactam binding and protein stability. The Zn2+-binding motif is also present in C. difficile PBP3 and SpoVD (which are known to be essential for sporulation), as well as in other bacterial taxa including species living in extreme environments and the human gut. We speculate that this thiol-containing motif and its cognate Zn2+ might function as a redox sensor to regulate cell wall synthesis for survival in adverse or anaerobic environments.


Subject(s)
Cephalosporin Resistance , Clostridioides difficile , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cephalosporins/pharmacology , Clostridioides , Humans , Serine , Zinc , beta-Lactams/pharmacology
3.
Orig Life Evol Biosph ; 50(1-2): 1-14, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32388697

ABSTRACT

The numerous and varied roles of phosphorylated organic molecules in biochemistry suggest they may have been important to the origin of life. The prominence of phosphorylated molecules presents a conundrum given that phosphorylation is a thermodynamically unfavorable, endergonic process in water, and most natural sources of phosphate are poorly soluble. We recently demonstrated that a semi-aqueous solvent consisting of urea, ammonium formate, and water (UAFW) supports the dissolution of phosphate and the phosphorylation of nucleosides. However, the prebiotic feasibility and robustness of the UAFW system are unclear. Here, we study the UAFW system as a medium in which phosphate minerals are potentially solubilized. Specifically, we conduct a series of chemical experiments alongside thermodynamic models that simulate the formation of ammonium formate from the hydrolysis of hydrogen cyanide, and demonstrate the stability of formamide in such solvents (as an aqueous mixture). The dissolution of hydroxylapatite requires a liquid medium, and we investigate whether a UAFW system is solid or liquid over varied conditions, finding that this characteristic is controlled by the molar ratios of the three components. For liquid UAFW mixtures, we also find the solubility of phosphate is higher when the quantity of ammonium formate is greater than urea. We suggest the urea within the system can lower the activity of water, help create a stable and persistent solution, and may act as a condensing agent/catalyst to improve nucleoside phosphorylation yields.


Subject(s)
Formates/chemistry , Origin of Life , Solvents/chemistry , Urea/chemistry , Water/chemistry , Evolution, Planetary , Phosphorylation , Solubility , Thermodynamics
4.
Life (Basel) ; 3(3): 386-402, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-25369812

ABSTRACT

The emergence of mechanisms for phosphorylating organic and inorganic molecules is a key step en route to the earliest living systems. At the heart of all contemporary biochemical systems reside reactive phosphorus (P) molecules (such as adenosine triphosphate, ATP) as energy currency molecules to drive endergonic metabolic processes and it has been proposed that a predecessor of such molecules could have been pyrophosphate [P2O74-; PPi(V)]. Arguably the most geologically plausible route to PPi(V) is dehydration of orthophosphate, Pi(V), normally a highly endergonic process in the absence of mechanisms for activating Pi(V). One possible solution to this problem recognizes the presence of reactive-P containing mineral phases, such as schreibersite [(Fe,Ni)3P] within meteorites whose abundance on the early Earth would likely have been significant during a putative Hadean-Archean heavy bombardment. Here, we propose that the reduced oxidation state P-oxyacid, H-phosphite [HPO32-; Pi(III)] could have activated Pi(V) towards condensation via the intermediacy of the condensed oxyacid pyrophosphite [H2P2O52-; PPi(III)]. We provide geologically plausible provenance for PPi(III) along with evidence of its ability to activate Pi(V) towards PPi(V) formation under mild conditions (80 °C) in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...