Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Res ; 85(1): e22136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009423

ABSTRACT

Cancer is still a global health problem. Among cancer types, breast cancer is the most frequently diagnosed one, and it causes a high mortality rate if not diagnosed in the early stages. In our study, imatinib encapsulated, nanosized, neutral/cationic liposome formulations were prepared as theranostic agents for breast cancer. After the characterization studies in which all liposomes exhibited proper profile owing to their particle size between 133 and 250 nm, polydispersity index values lower than 0.4, neutral and cationic zeta potential values, and high drug encapsulation efficiency, controlled drug release behaviors with zero-order kinetic were obtained. The higher than 90% radiolabeling efficiency values were obtained thanks to the determination of optimum radiolabeling condition (80°C temperature, 5 mCi radioactivity, and 10 min incubation period). According to the resazurin assay evaluating the cytotoxic profile of liposomes on MCF7 cells, neutral empty liposome was found as biocompatible, while both cationic liposomes (empty and drug-loaded ones) exhibited high nonspecific cytotoxicity at even low drug concentration due to the existence of stearyl amine in the formulations. However, dose-dependent cytotoxic effect and the highest cellular binding capacity were obtained by imatinib loaded neutral liposomes. In conclusion, 68 Ga-radiolabeled, imatinib-loaded, neutral, nanosized liposome formulation is the most promising one as a theranostic agent among all formulations.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Imatinib Mesylate/pharmacology , Liposomes/chemistry , Liposomes/therapeutic use , Precision Medicine , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Particle Size
2.
AAPS PharmSciTech ; 24(3): 77, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899198

ABSTRACT

Infectious diseases are still the major issue not only due to antibiotic resistance but also causing deaths if not diagnosed at early-stages. Different approaches including nanosized drug delivery systems and theranostics are researched to overcome antibiotic resistance, decrease the side effects of antibiotics, improve the treatment response, and early diagnose. Therefore, in the present study, nanosized, radiolabeled with 99mTc, colistin encapsulated, neutral and cationic liposome formulations were prepared as the theranostic agent for Pseudomonas aeruginosa infections. Liposomes exhibited appropriate physicochemical properties thanks to their nano-particle size (between 173 and 217 nm), neutral zeta potential value (about - 6.5 and 2.8 mV), as well as encapsulation efficiency of about 75%. All liposome formulations were radiolabeled with over 90% efficiency, and the concentration of stannous chloride was found as 1 mg.mL-1 to obtain maximum radiolabeling efficiency. In alamar blue analysis, neutral liposome formulations were found more biocompatible compared with the cationic formulations. Neutral colistin encapsulated liposomes were found to be more effective against P. aeruginosa strain according to their time-dependent antibacterial effect, in addition to their highest bacterial binding capacity. As conclusion, theranostic, nanosized, colistin encapsulated, neutral liposome formulations were found as promising agents for the imaging and treating of P. aeruginosa infections.


Subject(s)
Liposomes , Pseudomonas Infections , Humans , Liposomes/chemistry , Colistin/pharmacology , Colistin/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Precision Medicine , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa
3.
Pharm Dev Technol ; 26(8): 852-866, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34193003

ABSTRACT

The goal of this study was to develop and examine the nanogel-based topical delivery system of mupirocin. Nanogels were prepared with chitosan and bovine serum albumin by ionic gelation and Carbopol 940 was added to improve the gelling/adhesive properties. Detailed characterization studies were performed and the cellular binding capacity of radiolabeled nanogels was investigated on CCD-1070Sk cell lines. Results indicate the successful formation of nanogels with particle size and zeta potential ranged between 341.920-603.320 nm and 13.120-24.300 mV, respectively. The mechanical and rheological studies proved pseudoplastic and strong elastic gel behavior (G' > G''). Mupirocin was successfully entrapped into nanogels with a ratio of more than 95% and the loaded drug was slowly released up to 93.89 ± 3.07% within 24 h. The ex vivo penetration and permeation percentages of mupirocin were very low (1.172 ± 0.202% and 0.161 ± 0.136%) indicating the suitability of nanogels for dermal use against superficial skin infections. The microbiological studies pointed out the effectiveness of nanogels against Staphylococcus aureus strains. Nanogels did not show toxicity signs and the cell binding capacity of radiolabeled formulations was found to be higher than [99mTc]NaTcO4 to CCD-1070Sk cell line. Overall, mupirocin nanogels might be considered as a potential and safe topical treatment option for bacterial skin infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Mupirocin/administration & dosage , Nanogels , Acrylic Resins/administration & dosage , Acrylic Resins/chemistry , Administration, Cutaneous , Anti-Bacterial Agents/pharmacokinetics , Chitosan/administration & dosage , Chitosan/chemistry , Disk Diffusion Antimicrobial Tests , Humans , Mupirocin/pharmacokinetics , Nanogels/administration & dosage , Nanogels/chemistry , Permeability , Radiopharmaceuticals , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
4.
AAPS PharmSciTech ; 22(2): 62, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33528714

ABSTRACT

Nowadays, the incidence of acute bacterial skin and skin structure infection (ABSSSI) is increasing. The increased bioavailability and reduced drug resistance of antibiotics are crucial to obtain a more effective treatment response in these infections. These favorable properties could be achieved by different drug delivery systems such as liposomes. In this study, nanosized, radiolabeled tedizolid phosphate liposomal formulations were prepared and evaluated with their in vitro cellular binding capacity and biocompatible profile for topical treatment of ABSSSI. Liposomes were characterized by evaluation of their visual inspection, particle size (about 190-270 nm), zeta potential value (around 0), and encapsulation efficiency (nearly 10%). The release rate of tedizolid phosphate from liposomes was also studied using dialysis membranes and evaluated kinetically. The stability of formulations was observed at three different temperatures and humidity conditions for 28 days. Afterward, liposomes were labeled with 99mTc, and the optimal amount of reducing agent (stannous chloride) was determined as 500 µg in this direct labeling procedure. All liposome formulations were successfully radiolabeled with high efficiency and exhibited high radiochemical purity (> 80%) during 6 h in different media. Furthermore, the cellular bindings of liposomal formulations were evaluated in human skin fibroblast cells by measuring the radioactivity. Higher radioactivity values were obtained in CCD-1070Sk cells incubated by liposome formulations compared to sodium pertechnetate. This finding suggested that liposomal formulation increased the cellular binding of radioactivity. By the result of our study, nanosized, tedizolid phosphate encapsulated liposome formulation was found to be a favorable carrier system in the treatment of ABSSSI.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Organophosphates/administration & dosage , Organophosphates/pharmacokinetics , Oxazoles/administration & dosage , Oxazoles/pharmacokinetics , Skin Diseases, Bacterial/drug therapy , Technetium/pharmacokinetics , Administration, Topical , Animals , Drug Compounding , Drug Delivery Systems , Drug Liberation , Humans , Liposomes/administration & dosage , Liposomes/pharmacokinetics , Organophosphates/chemistry , Oxazoles/chemistry
5.
J Labelled Comp Radiopharm ; 62(13): 874-884, 2019 11.
Article in English | MEDLINE | ID: mdl-31495966

ABSTRACT

The clinical impact and accessibility of 99m Tc tracers for cancer diagnosis would be greatly enhanced by the availability of a new, simple, and easy labeling process and radiopharmaceuticals. 5-Fluorouracil is an antitumor drug, which has played an important role for the treatment of breast carcinoma. In the present study, a new derivative of 5-Fluorouracil was synthesized as (1-[{1'-(1''-deoxy-2'',3'':4'',5''-di-O-isopropylidene-ß-D-fructopyranose-1''-yl)-1'H-1',2', 3'-triazol-4'-yl}methyl]-5-fluorouracil) (E) and radiolabeled with 99m Tc. It was analyzed by radio thin layer chromatography for quality control and stability. The radiolabeled complex was subjected to in vitro cell-binding studies to determine healthy and cancer cell affinity using HaCaT and MCF-7 cells, respectively. In addition, in vitro cytotoxicity studies of compound E were performed with HaCaT and MCF-5 cells. The radiochemical purity of the [99m Tc]TcE was found to be higher than 90% at room temperature up to 6 hours. The radiolabeled complex showed higher specific binding to MCF-7 cells than HaCaT cells. IC50 values of E were found 31.5 ± 3.4 µM and 20.7 ± 2.77 µM for MCF-7 and HaCaT cells, respectively. The results demonstrated the potential of a new radiolabeled E with 99m Tc has selective for breast cancer cells.


Subject(s)
Fluorouracil/chemistry , Fluorouracil/metabolism , Fluorouracil/toxicity , Humans , Hydrogen-Ion Concentration , Isotope Labeling , MCF-7 Cells , Radiochemistry , Technetium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...