Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
bioRxiv ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39282326

ABSTRACT

Background: Human noroviruses are a leading cause of acute and sporadic gastroenteritis worldwide. The evolution of human noroviruses in immunocompromised persons has been evaluated in many studies. Much less is known about the evolutionary dynamics of human norovirus in healthy adults. Methods: We used sequential samples collected from a controlled human infection study with GI.1/Norwalk/US/68 virus to evaluate intra- and inter-host evolution of a human norovirus in healthy adults. Up to 12 samples from day 1 to day 56 post-challenge were sequenced using a norovirus-specific capture probe method. Results: Complete genomes were assembled, even in samples that were below the limit of detection of standard RT-qPCR assays, up to 28 days post-challenge. Analysis of 123 complete genomes showed changes in the GI.1 genome in all persons, but there were no conserved changes across all persons. Single nucleotide variants resulting in non-synonymous amino acid changes were observed in all proteins, with the capsid VP1 and nonstructural protein NS3 having the largest numbers of changes. Conclusions: These data highlight the potential of a new capture-based sequencing approach to assemble human norovirus genomes with high sensitivity and demonstrate limited conserved immune pressure-driven evolution of GI.1 virus in healthy adults.

3.
bioRxiv ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39345650

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide, while human noroviruses (HuNoV) are a leading cause of epidemic and sporadic acute gastroenteritis. Generating full-length genome sequences for these viruses is crucial for understanding viral diversity and tracking emerging variants. However, obtaining high-quality sequencing data is often challenging due to viral strain variability, quality, and low titers. Here, we present a set of comprehensive oligonucleotide probe sets designed from 1,570 RSV and 1,376 HuNoV isolate sequences in GenBank. Using these probe sets and a capture enrichment sequencing workflow, 85 RSV positive nasal swab samples and 55 (49 stool and six human intestinal enteroids) HuNoV positive samples encompassing major subtypes and genotypes were characterized. The Ct values of these samples ranged from 17.0-29.9 for RSV, and from 20.2-34.8 for HuNoV, with some HuNoV having below the detection limit. The mean percentage of post-processing reads mapped to viral genomes was 85.1% for RSV and 40.8% for HuNoV post-capture, compared to 0.08% and 1.15% in pre-capture libraries, respectively. Full-length genomes were>99% complete in all RSV positive samples and >96% complete in 47/55 HuNoV positive samples-a significant improvement over genome recovery from pre-capture libraries. RSV transcriptome (subgenomic mRNAs) sequences were also characterized from this data. Probe-based capture enrichment offers a comprehensive approach for RSV and HuNoV genome sequencing and monitoring emerging variants. IMPORTANCE: Respiratory syncytial virus (RSV) and human noroviruses (HuNoV) are NIAID category C and category B priority pathogens, respectively, that inflict significant health consequences on children, adults, immunocompromised patients, and the elderly. Due to the high strain diversity of RSV and HuNoV genomes, obtaining complete genomes to monitor viral evolution and pathogenesis is challenging. In this paper, we present the design, optimization, and benchmarking of a comprehensive oligonucleotide target capture method for these pathogens. All 85 RSV samples and 49/55 HuNoV samples were patient-derived with six human intestinal enteroids. The methodology described here results has a higher success rate in obtaining full-length RSV and HuNoV genomes, enhancing the efficiency of studying these viruses and mutations directly from patient-derived samples.

4.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853945

ABSTRACT

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains. We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16] HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple adult donors, all segments of the small intestine from an adult organ donor and in two pediatric duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had significantly lower expression of α1-2-fucosylated glycans. 2'FL can be synthesized in large scale, and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the potential to be developed as a therapeutic for HuNoV gastroenteritis.

5.
J Infect Dis ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864524

ABSTRACT

BACKGROUND: The in vitro cultivation of human noroviruses allows a comparison of antibody levels measured in neutralization and histoblood group antigen (HBGA)-blocking assays. METHODS: Serum samples collected during the evaluation of an investigational norovirus vaccine (HIL-214 [formerly TAK-214]) were assayed for neutralizing antibody levels against the vaccine's prototype Norwalk virus/GI.1 (P1) virus strain. Results were compared to those previously determined using HBGA-blocking assays. RESULTS: Neutralizing antibody seroresponses were observed in 83% of 24 vaccinated adults, and antibody levels were highly correlated (r=0.81, P<0.001) with those measured by HBGA-blocking. CONCLUSIONS: GI.1-specific HBGA-blocking antibodies are a surrogate for neutralization of GI.1 norovirus.

6.
bioRxiv ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-38826387

ABSTRACT

Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells into intestinal organoids that were transplanted and matured in mice before making enteroids (H9tHIEs), genetically-engineered (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. Importance: HuNoVs cause global diarrheal illness and chronic infections in immunocompromised patients. This manuscript reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from i) different intestinal segments of single donors, ii) human embryonic stem cell-derived organoids transplanted into mice, iii) genetically-modified lines, and iv) a patient with chronic variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically-modified J4 FUT2-KI HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.

7.
PLoS One ; 19(6): e0304526, 2024.
Article in English | MEDLINE | ID: mdl-38857221

ABSTRACT

In vitro models, such as primary cells and continuous cell lines routinely used for evaluating drug candidates, have limitations in their translational relevance to human diseases. Organotypic cultures are increasingly being used to assess therapeutics for various cancers and infectious diseases. Monitoring drug cytotoxicity in cell cultures is crucial in drug development, and several commercially available kits for cytotoxicity assessment offer distinct advantages and limitations. Given the complexity of organoid cultures, including donor-driven variability, we investigated drug-treated, tissue stem cell-derived human intestinal organoid responses with commonly used cell cytotoxicity assay kits. Using seven different compounds, we compared the cytotoxicity assay performance of two different leaky membrane-based and two metabolism-based assays. Significant variability was seen in reported viability outcomes across assays and organoid lines. High baseline activity of lactate dehydrogenase (LDH) in four human intestinal organoid lines required modification of the standard LDH assay protocol. Additionally, the LDH assay reported unique resilience to damage in a genetically-modified line contrasting results compared to other assays. This study highlights factors that can impact the measurement of cell cytotoxicity in intestinal organoid models, which are emerging as valuable new tools for research and pre-clinical drug testing and suggest the need for using multiple assay types to ensure reliable cytotoxicity assessment.


Subject(s)
L-Lactate Dehydrogenase , Organoids , Humans , Organoids/drug effects , Organoids/metabolism , Organoids/cytology , L-Lactate Dehydrogenase/metabolism , Cell Survival/drug effects , Intestines/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism
8.
J Virol ; 98(7): e0202023, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38884472

ABSTRACT

Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause endemic and pandemic acute viral gastroenteritis. Previously, we reported that many HuNoV strains require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. BA was not essential for the replication of a pandemic-causing GII.4 HuNoV strain. We found the hydrophobic BA glycochenodeoxycholic acid (GCDCA) promotes the replication of the BA-dependent strain GII.3 in jejunal enteroids. Furthermore, we found that inhibition of the G-protein-coupled BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), by JTE-013, reduced GII.3 infection dose-dependently and inhibited GII.3 cellular uptake in enteroids. Herein, we sought to determine whether S1PR2 is required for other BA-dependent HuNoV strains, the BA-independent GII.4, and whether S1PR2 is required for BA-dependent HuNoV infection in HIEs from other small intestinal segments. We found a second S1PR2 inhibitor, GLPG2938, reduces GII.3 infection dose-dependently, and an S1PR2 agonist (CYM-5520) enhances GII.3 replication in the absence of GCDCA. GII.3 replication also is abrogated in the presence of JTE-013 and CYM-5520. JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not GII.4 Sydney (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. Finally, GII.3 infection of duodenal, jejunal, and ileal lines derived from the same individual is reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoVs exploit BA effects on S1PR2 to infect the entire small intestine.IMPORTANCEHuman noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA-independent strain, all require S1PR2 for infection. In addition, BA-dependent infection requires S1PR2 in multiple segments of the small intestine. Together, these results indicate that S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.


Subject(s)
Bile Acids and Salts , Norovirus , Sphingosine-1-Phosphate Receptors , Virus Replication , Humans , Norovirus/drug effects , Norovirus/physiology , Norovirus/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Virus Replication/drug effects , Bile Acids and Salts/pharmacology , Bile Acids and Salts/metabolism , Caliciviridae Infections/virology , Caliciviridae Infections/metabolism , Pyridines/pharmacology , Gastroenteritis/virology , Jejunum/virology , Jejunum/metabolism , Organoids/virology , Organoids/metabolism , Pyrazoles
10.
Glycobiology ; 34(6)2024 04 24.
Article in English | MEDLINE | ID: mdl-38590172

ABSTRACT

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Subject(s)
Blood Group Antigens , Caliciviridae Infections , Fucose , Glycoproteins , Histocompatibility Antigens , Jejunum , Organoids , Glycomics , Proteomics , Genotype , Phenotype , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Fucose/metabolism , Glycosylation , Blood Group Antigens/chemistry , Blood Group Antigens/genetics , Blood Group Antigens/metabolism , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Humans , Glycopeptides/chemistry , Caliciviridae Infections/blood , Caliciviridae Infections/immunology , Caliciviridae Infections/metabolism , Organoids/metabolism , Jejunum/metabolism , Jejunum/virology
SELECTION OF CITATIONS
SEARCH DETAIL