Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 106(9-10): 3489-3505, 2022 May.
Article in English | MEDLINE | ID: mdl-35562490

ABSTRACT

The 5-membered oxadiazole and thiadiazole scaffolds are the most privileged and well-known heterocycles, being a common and essential feature of a variety of natural products and medicinal agents. These scaffolds take up the center position and are the core structural components of numerous drugs that belong to different categories. These include antimicrobial, anti-tubercular, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. In this review, we mostly talk about the isomers 1,2,4-oxadiazole and 1,3,4-thiadiazole because they have important pharmacological properties. This is partly because they are chemical and heat resistant, unlike other isomers, and they can be used as bio-isosteric replacements in drug design. We are reviewing the structural modifications of different oxadiazole and thiadiazole derivatives, more specifically, the anti-tubercular and anticancer pharmacological activities reported over the last 5 years, as we have undertaken this as a core area of research. This review article desires to do a thorough study and analysis of the recent progress made in the important biological isomers 1,2,4-oxadiazole and 1,3,4-thiadiazol. This will be a great place to start for future research. KEY POINTS: • Five-membered heterocyclic compound chemistry and biological activity recent survey. • Synthesis and pharmacological evolution of 1,2,4-oxadiazole and 1,3,4-thiadiazole are discussed in detail. • The value and significance of heterocyclic compounds in the field of drug designing are highlighted.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Thiadiazoles , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/pharmacology
2.
Bioorg Chem ; 86: 507-512, 2019 05.
Article in English | MEDLINE | ID: mdl-30776681

ABSTRACT

Cinnamic acid and its derivatives are known for anti-tubercular activity. The present study reports the synthesis of cinnamic acid derivatives via bioisosteric replacement of terminal carboxylic acid with "oxadiazole". A series of cinnamic acid derivatives (styryl oxadiazoles) were designed and synthesized in good yields by reaction of substituted cinnamic acids (2, 15a-15s) with amidoximes. The synthesized styryl oxadiazoles were evaluated in vitro for anti-tubercular activity against Mycobacterium tuberculosis (Mtb) H37Ra strain. The structure-activity relationship (SAR) study has identified several compounds with mixed anti-tubercular profiles. The compound 32 displayed potent anti-tubercular activity (IC50 = 0.045 µg/mL). Molecular docking studies on mycobacterial enoyl-ACP reductase enzyme corroborated well with the experimental findings providing a platform for structure based hit-to-lead development.


Subject(s)
Antitubercular Agents/pharmacology , Drug Design , Mycobacterium tuberculosis/drug effects , Oxadiazoles/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...