Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Mol Graph Model ; 116: 108268, 2022 11.
Article in English | MEDLINE | ID: mdl-35872464

ABSTRACT

Bio-oils obtained from biomass contain heteroatoms compounds, like oxolane and thiolane. It is quite difficult for industrialist to purify such refractory bio-oils. One of the efficient strategies for the elimination of heteroatoms is hydrogenolysis process, which results in the formation of H2O and H2S residues as by-products. In this work, quantum chemical studies have been used to analyse the reaction mechanism for the removal of hetero atoms (S and O) as H2O and H2S. We selected B3LYP functional of DFT with Pople's basis set 6-311G(d,p) for computing the hydrogenolysis steps without catalyst. LANL2DZ basis set, is used for studying hydrogenolysis steps involving AlCl3 and WS3H3+ as catalysts. All the reactions are analysed at the temperature of 600 K and pressure of 40 bars. Structural, thermodynamic, kinetic properties have been employed to study this process. The analysis of variations parameters during the hydrogenolysis process reveals that these two organic biomass compounds undergo sequential ring opening at C-X (X = O, S) bonds. Butanol and Butanethiol are obtained as a result of first hydrogenolysis process, and these compounds are converted to butane during second catalytic process while eliminating heteroatoms.


Subject(s)
Oils , Biomass , Catalysis , Kinetics , Temperature
2.
J Mol Model ; 25(8): 237, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31332529

ABSTRACT

One of the possibilities of limiting carbon dioxide emissions is to use pyrolysis oils from biomass. However, their very high oxygen content confers to these oils a chemical instability and a high viscosity. Among the oxygen-containing compounds present in bio-oils, furanic compounds derived from the decomposition of cellulosic and hemi-cellulosic biomass are the most refractory to deoxygenation. The major products of their hydrodeoxygenation are alkanes and secondly alkenes, but the intermediates are still subject to controversy. In this work, we performed a DFT simulation of the hydrodeoxygenation of furan (C4H4O) and 2-methylfuran in the presence of molybdenum and tungsten sulphide Mo(W)S2. The aim of this work is to elucidate the reaction intermediates and to compare the activities of the two catalytic sites used in our reaction conditions. Our calculations show that the partial hydrogenation of the two molecules occurs preferentially in position (2,5). The hydrogenolysis reactions of the C-O bonds occur in two steps. The molybdenum sulphide exhibits higher catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...