Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38517331

ABSTRACT

We have previously demonstrated synergy between ICOS costimulation (IVAX; ICOSL-transduced B16-F10 cellular vaccine) and CTLA-4 blockade in antitumor therapy. In this study, we employed CyTOF and single-cell RNA sequencing and observed significant remodeling of the lymphoid and myeloid compartments in combination therapy. Compared with anti-CTLA-4 monotherapy, the combination therapy enriched Th1 CD4 T cells, effector CD8 T cells, and M1-like antitumor proinflammatory macrophages. These macrophages were critical to the therapeutic efficacy of anti-CTLA-4 combined with IVAX or anti-PD-1. Macrophage depletion with clodronate reduced the tumor-infiltrating effector CD4 and CD8 T cells, impairing their antitumor functions. Furthermore, the recruitment and polarization of M1-like macrophages required IFN-γ. Therefore, in this study, we show that there is a positive feedback loop between intratumoral effector T cells and tumor-associated macrophages (TAMs), in which the IFN-γ produced by the T cells polarizes the TAMs into M1-like phenotype, and the TAMs, in turn, reshape the tumor microenvironment to facilitate T cell infiltration, immune function, and tumor rejection.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , CTLA-4 Antigen , Neoplasms/therapy , CD8-Positive T-Lymphocytes , Phenotype , Tumor Microenvironment , Inducible T-Cell Co-Stimulator Protein
2.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33974041

ABSTRACT

Immune receptors expressed on TAMs are intriguing targets for tumor immunotherapy. In this study, we found inhibitory receptor LILRB4 on a variety of intratumoral immune cell types in murine tumor models and human cancers, most prominently on TAMs. LILRB4, known as gp49B in mice, is a LILRB family receptor. Human and murine LILRB4 have two extracellular domains but differ in the number of intracellular ITIMs (three versus two). We observed a high correlation in LILRB4 expression with other immune inhibitory receptors. After tumor challenge, LILRB4-/- mice and mice treated with anti-LILRB4 antibody showed reduced tumor burden and increased survival. LILRB4-/- genotype or LILRB4 blockade increased tumor immune infiltrates and the effector (Teff) to regulatory (Treg) T cell ratio and modulated phenotypes of TAMs toward less suppressive, CD4+ T cells to Th1 effector, and CD8+ T cells to less exhausted. These findings reveal that LILRB4 strongly suppresses tumor immunity in TME and that alleviating that suppression provides antitumor efficacy.


Subject(s)
Membrane Glycoproteins/immunology , Neoplasms/immunology , Neoplasms/therapy , Receptors, Immunologic/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Movement/immunology , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology
3.
Cancer Discov ; 11(3): 614-625, 2021 03.
Article in English | MEDLINE | ID: mdl-33257470

ABSTRACT

Immune checkpoint inhibitors (ICI) targeting CTLA4 or PD-1/PD-L1 have transformed cancer therapy but are associated with immune-related adverse events, including myocarditis. Here, we report a robust preclinical mouse model of ICI-associated myocarditis in which monoallelic loss of Ctla4 in the context of complete genetic absence of Pdcd1 leads to premature death in approximately half of mice. Premature death results from myocardial infiltration by T cells and macrophages and severe ECG abnormalities, closely recapitulating the clinical and pathologic hallmarks of ICI-associated myocarditis observed in patients. Using this model, we show that Ctla4 and Pdcd1 functionally interact in a gene dosage-dependent manner, providing a mechanism by which myocarditis arises with increased frequency in the setting of combination ICI therapy. We demonstrate that intervention with CTLA4-Ig (abatacept) is sufficient to ameliorate disease progression and additionally provide a case series of patients in which abatacept mitigates the fulminant course of ICI myocarditis. SIGNIFICANCE: We provide a preclinical model of ICI-associated myocarditis which recapitulates this clinical syndrome. Using this model, we demonstrate that CTLA4 and PD-1 (ICI targets) functionally interact for myocarditis development and that intervention with CTLA4-Ig (abatacept) attenuates myocarditis, providing mechanistic rationale and preclinical support for therapeutic clinical studies.See related commentary by Young and Bluestone, p. 537.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Molecular Targeted Therapy/adverse effects , Myocarditis/diagnosis , Myocarditis/etiology , Neoplasms/complications , Animals , Biomarkers, Tumor/antagonists & inhibitors , Cardiotoxicity , Disease Management , Disease Models, Animal , Disease Susceptibility , Electrocardiography , Humans , Immune Checkpoint Inhibitors/therapeutic use , Mice , Myocarditis/metabolism , Neoplasms/drug therapy , Neoplasms/etiology
4.
Sci Rep ; 7: 39867, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051144

ABSTRACT

In previous studies using mice with macrophage-specific loss of TRPC3 we found a significant, selective effect of TRPC3 on the biology of M1, or inflammatory macrophages. Whereas activation of some components of the unfolded protein response and the pro-apoptotic mediators CamkII and Stat1 was impaired in Trpc3-deficient M1 cells, gathering insight about other molecular signatures within macrophages that might be affected by Trpc3 expression requires an alternative approach. In the present study we conducted RNA-seq analysis to interrogate the transcriptome of M1 macrophages derived from mice with macrophage-specific loss of TRPC3 and their littermate controls. We identified 160 significantly differentially expressed genes between the two groups, of which 62 were upregulated and 98 downregulated in control vs. Trpc3-deficient M1 macrophages. Gene ontology analysis revealed enrichment in processes associated to cellular movement and lipid signaling, whereas the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included networks for calcium signaling and cell adhesion molecules, among others. This is the first deep transcriptomic analysis of macrophages in the context of Trpc3 deficiency and the data presented constitutes a unique resource to further explore functions of TRPC3 in macrophage biology.


Subject(s)
Gene Expression Profiling , Macrophages/metabolism , TRPC Cation Channels/genetics , Animals , Bone Marrow Cells/cytology , Cell Movement/drug effects , Cells, Cultured , Chemokine CCL2/pharmacology , Down-Regulation , Macrophages/cytology , Mice , Mice, Knockout , Netrin-1/pharmacology , TRPC Cation Channels/deficiency , Transcriptome , Up-Regulation
5.
Free Radic Biol Med ; 87: 157-68, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26119786

ABSTRACT

Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants.


Subject(s)
Antioxidants/administration & dosage , Benzenesulfonates/administration & dosage , Free Radicals/metabolism , Glioma/drug therapy , Imines/administration & dosage , Animals , Contrast Media/chemistry , Cyclic N-Oxides/chemistry , Disease Models, Animal , Free Radicals/chemistry , Glioma/metabolism , Glioma/pathology , Humans , Magnetic Resonance Imaging , Male , Malondialdehyde/chemistry , Malondialdehyde/metabolism , Rats , Spin Trapping
SELECTION OF CITATIONS
SEARCH DETAIL
...