Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 15(2): 648-667, 2022 02.
Article in English | MEDLINE | ID: mdl-33336898

ABSTRACT

Colorectal cancer pathogenesis and progression is associated with the presence of Fusobacterium nucleatum and the reduction of acetylated derivatives of spermidine, as well as dietary components such as tannin-rich foods. We show that a new tannase orthologue of F. nucleatum (TanBFnn ) has significant structural differences with its Lactobacillus plantarum counterpart affecting the flap covering the active site and the accessibility of substrates. Crystallographic and molecular dynamics analysis revealed binding of polyamines to a small cavity that connects the active site with the bulk solvent which interact with catalytically indispensable residues. As a result, spermidine and its derivatives, particularly N8 -acetylated spermidine, inhibit the hydrolytic activity of TanBFnn and increase the toxicity of gallotannins to F. nucleatum. Our results support a model in which the balance between the detoxicant activity of TanBFnn and the presence of metabolic inhibitors can dictate either conducive or unfavourable conditions for the survival of F. nucleatum.


Subject(s)
Fusobacterium nucleatum , Hydrolyzable Tannins , Carboxylic Ester Hydrolases/genetics , Spermidine
2.
Gut Microbes ; 13(1): 1939598, 2021.
Article in English | MEDLINE | ID: mdl-34224309

ABSTRACT

Gut microbiota is a constant source of antigens and stimuli to which the resident immune system has developed tolerance. However, the mechanisms by which mononuclear phagocytes, specifically monocytes/macrophages, cope with these usually pro-inflammatory signals are poorly understood. Here, we show that innate immune memory promotes anti-inflammatory homeostasis, using as model strains of the commensal bacterium Lactiplantibacillus plantarum. Priming of monocytes/macrophages with bacteria, especially in its live form, enhances bacterial intracellular survival and decreases the release of pro-inflammatory signals to the environment, with lower production of TNF and higher levels of IL-10. Analysis of the transcriptomic landscape of these cells shows downregulation of pathways associated with the production of reactive oxygen species (ROS) and the release of cytokines, chemokines and antimicrobial peptides. Indeed, the induction of ROS prevents memory-induced bacterial survival. In addition, there is a dysregulation in gene expression of several metabolic pathways leading to decreased glycolytic and respiratory rates in memory cells. These data support commensal microbe-specific metabolic changes in innate immune memory cells that might contribute to homeostasis in the gut.


Subject(s)
Immunity, Innate , Lactobacillaceae/immunology , Macrophages/immunology , Monocytes/immunology , Adult , Aged , Animals , Antimicrobial Peptides/immunology , Female , Humans , Immunologic Memory , Interleukin-10/immunology , Macrophages/microbiology , Male , Mice , Microbiota , Middle Aged , Monocytes/microbiology , RAW 264.7 Cells , Saliva/microbiology , Symbiosis
3.
PLoS Biol ; 19(1): e3001062, 2021 01.
Article in English | MEDLINE | ID: mdl-33395408

ABSTRACT

Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo.


Subject(s)
Borrelia burgdorferi/immunology , Cardiomyopathies/etiology , Immunologic Memory , Lyme Disease/immunology , Macrophages/physiology , Animals , Cardiomyopathies/immunology , Cardiomyopathies/microbiology , Cardiomyopathies/pathology , Cells, Cultured , Endocarditis, Bacterial/complications , Endocarditis, Bacterial/immunology , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/pathology , Female , HEK293 Cells , Heart/microbiology , Humans , Lyme Disease/pathology , Macrophage Activation/physiology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/immunology , Myocytes, Cardiac/microbiology , Myocytes, Cardiac/pathology , RAW 264.7 Cells
4.
Sci Rep ; 10(1): 572, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31953445

ABSTRACT

Recent evidences indicate that mitochondrial genes and function are decreased in active ulcerative colitis (UC) patients, in particular, the activity of Complex I of the electron transport chain is heavily compromised. MCJ is a mitochondrial inner membrane protein identified as a natural inhibitor of respiratory chain Complex I. The induction of experimental colitis in MCJ-deficient mice leads to the upregulation of Timp3 expression resulting in the inhibition of TACE activity that likely inhibits Tnf and Tnfr1 shedding from the cell membrane in the colon. MCJ-deficient mice also show higher expression of Myd88 and Tlr9, proinflammatory genes and disease severity. Interestingly, the absence of MCJ resulted in distinct microbiota metabolism and composition, including a member of the gut community in UC patients, Ruminococcus gnavus. These changes provoked an effect on IgA levels. Gene expression analyses in UC patients showed decreased levels of MCJ and higher expression of TIMP3, suggesting a relevant role of mitochondrial genes and function among active UC. The MCJ deficiency disturbs the regulatory relationship between the host mitochondria and microbiota affecting disease severity. Our results indicate that mitochondria function may be an important factor in the pathogenesis. All together support the importance of MCJ regulation during UC.


Subject(s)
Bacteria/classification , Colitis, Ulcerative/genetics , Dysbiosis/genetics , HSP40 Heat-Shock Proteins/genetics , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , ADAM17 Protein/genetics , Animals , Bacteria/genetics , Bacteria/isolation & purification , Colitis, Ulcerative/microbiology , Disease Models, Animal , Gene Deletion , Gene Expression Regulation , Humans , Mice , Microbiota , Phylogeny , Receptors, Tumor Necrosis Factor, Type I/genetics , Severity of Illness Index , Tissue Inhibitor of Metalloproteinase-3/genetics , Tumor Necrosis Factor-alpha/genetics
5.
PLoS Pathog ; 15(11): e1008163, 2019 11.
Article in English | MEDLINE | ID: mdl-31738806

ABSTRACT

Macrophages mediate the elimination of pathogens by phagocytosis resulting in the activation of specific signaling pathways that lead to the production of cytokines, chemokines and other factors. Borrelia burgdorferi, the causative agent of Lyme disease, causes a wide variety of pro-inflammatory symptoms. The proinflammatory capacity of macrophages is intimately related to the internalization of the spirochete. However, most receptors mediating this process are largely unknown. We have applied a multiomic approach, including the proteomic analysis of B. burgdorferi-containing phagosome-enriched fractions, to identify surface receptors that are involved in the phagocytic capacity of macrophages as well as their inflammatory output. Sucrose gradient protein fractions of human monocyte-derived macrophages exposed to B. burgdorferi contained the phagocytic receptor, CR3/CD14 highlighting the major role played by these proteins in spirochetal phagocytosis. Other proteins identified in these fractions include C-type lectins, scavenger receptors or Siglecs, of which some are directly involved in the interaction with the spirochete. We also identified the Fc gamma receptor pathway, including the binding receptor, CD64, as involved both in the phagocytosis of, and TNF induction in response to B. burgdorferi in the absence of antibodies. The common gamma chain, FcγR, mediates the phagocytosis of the spirochete, likely through Fc receptors and C-type lectins, in a process that involves Syk activation. Overall, these findings highlight the complex array of receptors involved in the phagocytic response of macrophages to B. burgdorferi.


Subject(s)
Borrelia burgdorferi/immunology , Lyme Disease/immunology , Macrophage Activation/immunology , Phagocytosis/immunology , Receptors, Cell Surface/metabolism , Animals , Cytokines/metabolism , Lyme Disease/metabolism , Lyme Disease/microbiology , Mice , Mice, Inbred C57BL , Proteomics , Receptors, Cell Surface/immunology , Signal Transduction
6.
Emerg Microbes Infect ; 7(1): 19, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29511161

ABSTRACT

Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signaling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomic and proteomic approaches. We identified a common pattern of genes that are transcriptionally regulated and overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern-recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine TNF. Cd180-silenced cells produce increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.


Subject(s)
Antigens, CD/immunology , Borrelia burgdorferi/physiology , Lyme Disease/genetics , Macrophages/immunology , Animals , Antigens, CD/genetics , Borrelia burgdorferi/genetics , Cytokines/genetics , Cytokines/immunology , Humans , Lyme Disease/immunology , Lyme Disease/microbiology , Macrophages/chemistry , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Monocytes/chemistry , Monocytes/immunology , Monocytes/microbiology , Phagocytosis , Proteomics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
7.
Sci Rep ; 5: 14692, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26419808

ABSTRACT

MCJ (DNAJC15) is a mitochondrial protein that regulates the mitochondrial metabolic status of macrophages and their response to inflammatory stimuli. CpG island methylation in cancer cells constitutes the only mechanism identified for the regulation of MCJ gene expression. However, whether DNA methylation or transcriptional regulation mechanisms are involved in the physiological control of this gene expression in non-tumor cells remains unknown. We now demonstrate a mechanism of regulation of MCJ expression that is independent of DNA methylation. IFNγ, a protective cytokine against cardiac inflammation during Lyme borreliosis, represses MCJ transcription in macrophages. The transcriptional regulator, Ikaros, binds to the MCJ promoter in a Casein kinase II-dependent manner, and mediates the repression of MCJ expression. These results identify the MCJ gene as a transcriptional target of IFNγ and provide evidence of the dynamic adaptation of normal tissues to changes in the environment as a way to adapt metabolically to new conditions.


Subject(s)
DNA Methylation , Gene Expression Regulation , Gene Silencing , Ikaros Transcription Factor/metabolism , Macrophages/metabolism , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Animals , Base Sequence , Borrelia burgdorferi , Casein Kinase II/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Interferon-gamma/pharmacology , Macrophages/pathology , Mice , Mice, Knockout , Molecular Sequence Data , Myocarditis/etiology , Myocarditis/metabolism , Myocarditis/pathology , Promoter Regions, Genetic , Protein Binding , Transcription, Genetic , Transcriptional Activation
8.
J Infect Dis ; 211(1): 135-45, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25028693

ABSTRACT

Mitochondria contribute to macrophage immune function through the generation of reactive oxygen species, a byproduct of the mitochondrial respiratory chain. MCJ (also known as DnaJC15) is a mitochondrial inner membrane protein identified as an endogenous inhibitor of respiratory chain complex I. Here we show that MCJ is essential for the production of tumor necrosis factor by macrophages in response to a variety of Toll-like receptor ligands and bacteria, without affecting their phagocytic activity. Loss of MCJ in macrophages results in increased mitochondrial respiration and elevated basal levels of reactive oxygen species that cause activation of the JNK/c-Jun pathway, lead to the upregulation of the TACE (also known as ADAM17) inhibitor TIMP-3, and lead to the inhibition of tumor necrosis factor shedding from the plasma membrane. Consequently, MCJ-deficient mice are resistant to the development of fulminant liver injury upon lipopolysaccharide administration. Thus, attenuation of the mitochondrial respiratory chain by MCJ in macrophages exquisitely regulates the response of macrophages to infectious insults.


Subject(s)
Inflammation/metabolism , Macrophages/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Oxidative Stress/physiology , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Cell Line , Cell Membrane/genetics , Cell Membrane/metabolism , Electron Transport , Genes, jun , Inflammation/genetics , MAP Kinase Signaling System , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Oxidative Stress/genetics , Phagocytosis/physiology , Reactive Oxygen Species/metabolism , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...