Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 23(5): e2200563, 2023 05.
Article in English | MEDLINE | ID: mdl-36861255

ABSTRACT

Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger ß-sheets (αßT). Steered molecular dynamics simulations predict that this αßT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns-1 ) show the appearance of ß-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αßT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of ß-sheets competes with interchain sliding. ß-sheet formation is only possible in higher-order CC assemblies or in tensile-loading geometries where chain sliding and dissociation are prohibited.


Subject(s)
Molecular Dynamics Simulation , Protein Conformation, beta-Strand , Protein Conformation, alpha-Helical , Protein Structure, Secondary , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...