Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(6): e0019924, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38682917

ABSTRACT

Streptomycin thallous acetate actidione medium is typically used to isolate Brochothrix thermosphacta bacteria from food. Using this medium, three bacterial strains were isolated from the environment. Genomic sequences demonstrated that these bacteria are of the genera Lysinibacillus and Paenibacillus and are of biotechnological interest.

2.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36830168

ABSTRACT

Plasmids that carry antibiotic resistance genes occur frequently in Aeromonas salmonicida subsp. salmonicida, an aquatic pathogen with severe consequences in salmonid farming. Here, we describe a 67 kb plasmid found in the A. salmonicida subsp. salmonicida Strain SHY15-2939 from Quebec, Canada. This new plasmid, named pAsa-2939 and identified by high throughput sequencing, displays features never found before in this bacterial species. It contains a transposon related to the Tn21 family, but with an unusual organization. This transposon bears a catB3 gene (chloramphenicol resistance) that has not been detected yet in A. salmonicida subsp. salmonicida. The plasmid is transferable by conjugation into Aeromonas hydrophila, but not into Escherichia coli. Based on PCR analysis and genomic sequencing (Illumina and PacBio), we determined that the transposon is unstable in A. salmonicida subsp. salmonicida Strain SHY15-2939, but it is stable in A. hydrophila trans-conjugants, which explains the chloramphenicol resistance variability observed in SHY15-2939. These results suggest that this bacterium is likely not the most appropriate host for this plasmid. The presence of pAsa-2939 in A. salmonicida subsp. salmonicida also strengthens the reservoir role of this bacterium for antibiotic resistance genes, even those that resist antibiotics not used in aquaculture in Québec, such as chloramphenicol.

3.
Genome ; 66(5): 108-115, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36780641

ABSTRACT

All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.


Subject(s)
Aeromonas salmonicida , Dictyostelium , Animals , Aeromonas salmonicida/genetics , Phylogeny , Canada , Cluster Analysis
4.
Antibiotics (Basel) ; 11(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36009916

ABSTRACT

Aeromonas salmonicida subsp. salmonicida is a pathogenic bacterium responsible for furunculosis in salmonids. Following an outbreak of furunculosis, the infection can be treated with antibiotics, but it is common to observe ineffective treatment due to antibiotic resistance. This bacterium has a wide variety of plasmids responsible for this resistance. Among them, pRAS3 carries a tetracycline resistance gene. Several variants of this plasmid have been discovered over the years (pRAS3-3432 and pRAS3.1 to 3.4). During the present study, two new variants of the plasmid pRAS3 were identified (pRAS3.5 and pRAS3-3759) in strains of A. salmonicida subsp. salmonicida. Plasmid pRAS3-3759, which has been found in many strains from the same region over the past three years, has an additional genetic element identical to one found in pRAS3-3432. This genetic element was also found in Chlamydia suis, a swine pathogen. In this study, we analyzed the bacteria's resistance to tetracycline, the number of copies of the plasmids, and the growth of the strains that carry five of the pRAS3 variants (pRAS3.3 to 3.5, pRAS3-3432, and pRAS3-3759). The results show no particular trend despite the differences between the plasmids, except for the resistance to tetracycline when analyzed in an isogenic background. Blast analysis also revealed the presence of pRAS3 plasmids in other bacterial species, which suggests that this plasmid family has widely spread. This study once again highlights the ability of A. salmonicida subsp. salmonicida to adapt to furunculosis antibiotic treatments, and the still-growing family of pRAS3 plasmids.

5.
J Biol Chem ; 295(26): 8708-8724, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32371400

ABSTRACT

Mammalian acetylcholinesterase (AChE) is well-studied, being important in both cholinergic brain synapses and the peripheral nervous systems and also a key drug target for many diseases. In contrast, little is known about the structures and molecular mechanism of prokaryotic acetylcholinesterases. We report here the structural and biochemical characterization of ChoE, a putative bacterial acetylcholinesterase from Pseudomonas aeruginosa Analysis of WT and mutant strains indicated that ChoE is indispensable for P. aeruginosa growth with acetylcholine as the sole carbon and nitrogen source. The crystal structure of ChoE at 1.35 Å resolution revealed that this enzyme adopts a typical fold of the SGNH hydrolase family. Although ChoE and eukaryotic AChEs catalyze the same reaction, their overall structures bear no similarities constituting an interesting example of convergent evolution. Among Ser-38, Asp-285, and His-288 of the catalytic triad residues, only Asp-285 was not essential for ChoE activity. Combined with kinetic analyses of WT and mutant proteins, multiple crystal structures of ChoE complexed with substrates, products, or reaction intermediate revealed the structural determinants for substrate recognition, snapshots of the various catalytic steps, and the molecular basis of substrate inhibition at high substrate concentrations. Our results indicate that substrate inhibition in ChoE is due to acetate release being blocked by the binding of a substrate molecule in a nonproductive mode. Because of the distinct overall folds and significant differences of the active site between ChoE and eukaryotic AChEs, these structures will serve as a prototype for other prokaryotic acetylcholinesterases.


Subject(s)
Acetylcholinesterase/metabolism , Pseudomonas aeruginosa/enzymology , Acetylcholinesterase/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Protein Conformation , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Substrate Specificity
6.
Front Genet ; 8: 211, 2017.
Article in English | MEDLINE | ID: mdl-29326751

ABSTRACT

In Aeromonas salmonicida subsp. salmonicida, a bacterium that causes fish disease, there are two types of small plasmids (<15 kbp): plasmids without known function, called cryptic plasmids, and plasmids that bear beneficial genes for the bacterium. Four among them are frequently detected in strains of A. salmonicida subsp. salmonicida: pAsa1, pAsa2, pAsa3, and pAsal1. The latter harbors a gene which codes for an effector of the type three secretion system, while the three others are cryptic. It is currently unclear why these cryptic plasmids are so highly conserved throughout strains of A. salmonicida subsp. salmonicida. In this study, three small plasmids, named pAsa10, pAsaXI and pAsaXII, are described. Linked to tetracycline resistance, a partial Tn1721 occupies half of pAsa10. A whole Tn1721 is also present in pAsa8, another plasmid previously described in A. salmonicida subsp. salmonicida. The backbone of pAsa10 has no relation with other plasmids described in this bacterium. However, the pAsaXI and pAsaXII plasmids are derivatives of cryptic plasmids pAsa3 and pAsa2, respectively. pAsaXI is identical to pAsa3, but bears a transposon with a gene that encodes for a putative virulence factor. pAsaXII, also found in Aeromonas bivalvium, has a 95% nucleotide identity with the backbone of pAsa2. Like pAsa7, another pAsa2-like plasmid recently described, orf2 and orf3 are missing and are replaced in pAsaXII by genes that encode a formaldehyde detoxification system. These new observations suggest that transposons and particularly Tn1721 are frequent and diversified in A. salmonicida subsp. salmonicida. Moreover, the discovery of pAsaXI and pAsaXII expands the group of small plasmids that are derived from cryptic plasmids and have a function. Although their precise roles remain to be determined, the present study shows that cryptic plasmids could serve as moldable vectors to acquire mobile elements such as transposons. Consequently, they could act as key agents of the diversification of virulence and adaptive traits of Aeromonas salmonicida subsp. salmonicida.

7.
Sci Rep ; 6: 35617, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752114

ABSTRACT

The bacterium Aeromonas salmonicida subsp. salmonicida is a common pathogen in fish farms worldwide. Since the antibiotic resistance of this bacterial species is on the increase, it is important to have a broader view on this issue. In the present study, we tested the presence of known plasmids conferring multi-drug resistance as well as antibiotic resistance genes by a PCR approach in 100 Canadian A. salmonicida subsp. salmonicida isolates. Our study highlighted the dominance of the conjugative pSN254b plasmid, which confers multi-drug resistance. We also identified a new multi-drug plasmid named pAsa8, which has been characterized by a combination of sequencing technologies (Illumina and Oxford nanopore). This new plasmid harbors a complex class 1 integron similar to the one of the Salmonella genomic island 1 (SGI1) found in Salmonella enterica and Proteus mirabilis. Consequently, in addition to providing an update on the A. salmonicida subsp. salmonicida isolates that are resistant to antibiotics, our data suggest that this bacterium is potentially an important reservoir of drug resistance genes and should consequently be monitored more extensively. In addition, we describe a screening method that has the potential to become a diagnostic tool that is complementary to other methods currently in use.


Subject(s)
Aeromonas salmonicida/physiology , Anti-Bacterial Agents/therapeutic use , Drug Resistance/genetics , Fish Diseases/drug therapy , Fishes/immunology , Genomic Islands/genetics , Gram-Negative Bacterial Infections/drug therapy , Integrons/genetics , Plasmids/genetics , Animals , Canada , Fish Diseases/genetics , Genetic Testing , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/genetics
8.
Microbiology (Reading) ; 162(6): 942-953, 2016 06.
Article in English | MEDLINE | ID: mdl-27028891

ABSTRACT

Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.


Subject(s)
Aeromonas salmonicida/genetics , Bacterial Proteins/genetics , Chloramphenicol O-Acetyltransferase/genetics , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Aeromonas salmonicida/drug effects , Aeromonas salmonicida/isolation & purification , Animals , Base Sequence , Chloramphenicol/pharmacology , Fishes/microbiology , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Phylogeny , Replicon/genetics , Sequence Analysis, DNA
9.
Front Microbiol ; 6: 1274, 2015.
Article in English | MEDLINE | ID: mdl-26635745

ABSTRACT

Furunculosis, which is caused by Aeromonas salmonicida subsp. salmonicida, is a major salmonid disease in fish farms worldwide. Several plasmids found in this bacterium confer phenotypes such drug resistance and virulence. Small plasmids (pAsa1, pAsa2, pAsa3, and pAsal1) related to ColE1- and ColE2-type replicons are usually present in its normal plasmidome. In the present study, with the objective to investigate if these plasmids display particularities related to the origin of the isolates bearing them, a total of 153 isolates, including 78 new and 75 previously described, were analyzed for the presence of small plasmids by PCR and DNA restriction fragment profiling. A geographical dichotomy between Canadian and European isolates for their propensity to do not have pAsa3 or pAsal1 was found. In addition, the genotyping analysis led to the identification of two European isolates harboring an unusual pAsal1. An investigation by next-generation sequencing (NGS) of these two isolates shed light on two pAsal1 variants (pAsal1C and pAsal1D). As with pAsal1B, another pAsal1 variant previously described, these two new variants bore a second insertion sequence (ISAS5) in addition to the usual ISAS11. The characterization of these variants suggested that they could predominate over the wild-type pAsal1 in stressful conditions such as growth at temperatures of 25°C and above. To obtain a comprehensive portrait of the mutational pressure on small plasmids, 26 isolates whose DNA had been sequenced by NGS were investigated. pAsa3 and pAsal1 were more prone to mutations than pAsa1 and pAsa2, especially in the mobA gene, which encodes a relaxase and a primase. Lastly, the average copy number of each plasmid per cell was assessed using raw sequencing data. A clear trend with respect to the relative proportion per cell of each plasmid was identified. Our large-scale study revealed a geographical dichotomy in small plasmid repertoire in addition to a clear trend for pAsa3 and pAsal1 to be more frequently altered. Moreover, we present the discovery of two new variants of pAsal1: pAsal1C and pAsal1D.

10.
Vet Microbiol ; 175(1): 68-76, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25480167

ABSTRACT

Aeromonas salmonicida subsp. salmonicida is a fish pathogen. Analysis of its genomic characteristics is required to determine the worldwide distribution of the various populations of this bacterium. Genomic alignments between the 01-B526 pathogenic strain and the A449 reference strain have revealed a 51-kb chromosomal insertion in 01-B526. This insertion (AsaGEI1a) has been identified as a new genomic island (GEI) bearing prophage genes. PCR assays were used to detect this GEI in a collection of 139 A. salmonicida subsp. salmonicida isolates. Three forms of this GEI (AsaGEI1a, AsaGEI1b, AsaGEI2a) are now known based on this analysis and the sequencing of the genomes of seven additional isolates. A new prophage (prophage 3) associated with AsaGEI2a was also discovered. Each GEI appeared to be strongly associated with a specific geographic region. AsaGEI1a and AsaGEI2a were exclusively found in North American isolates, except for one European isolate bearing AsaGEI2a. The majority of the isolates bearing AsaGEI1b or no GEI were from Europe. Prophage 3 has also a particular geographic distribution and was found only in North American isolates. We demonstrated that A. salmonicida subsp. salmonicida possesses unsuspected elements of genomic heterogeneity that could be used as indicators to determine the geographic origins of isolates of this bacterium.


Subject(s)
Aeromonas salmonicida/genetics , Chromosomes, Bacterial/genetics , Fish Diseases/microbiology , Genetic Variation , Genomic Islands/genetics , Gram-Negative Bacterial Infections/veterinary , Animals , Base Sequence , Fishes , Furunculosis/microbiology , Genomics , Geography , Gram-Negative Bacterial Infections/microbiology , Molecular Sequence Data , Mutagenesis, Insertional , Sequence Analysis, DNA , Species Specificity
11.
J Microbiol Methods ; 98: 44-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24389038

ABSTRACT

Aeromonas salmonicida subsp. salmonicida is a major fish pathogen. Molecular tools are required to study the virulence and genomic stability of this bacterium. An efficient electroporation-mediated transformation protocol for A. salmonicida subsp. salmonicida would make genetic studies faster and easier. In the present study, we designed the 4.1-kb pSDD1 plasmid as a tool for optimizing an electroporation protocol for A. salmonicida subsp. salmonicida. We systematically tested the electroporation conditions to develop a protocol that generates the maximum number of transformants. Under these optimal conditions (25 kV/cm, 200 Ω, 25 µF), we achieved an electroporation efficiency of up to 1×10(5) CFU/µg DNA. The electroporation protocol was also tested using another plasmid of 10.6-kb and three different strains of A. salmonicida subsp. salmonicida. The strains displayed significant differences in their electro-transformation competencies. Strain 01-B526 was the easiest to electroporate, especially with the pSDD1 plasmid. This plasmid was stably maintained in the 01-B526 transformants, as were the native plasmids, but could be easily cured by removing the selection conditions. This is the first efficient electroporation protocol reported for A. salmonicida subsp. salmonicida, and offers new possibilities for studying this bacterium.


Subject(s)
Aeromonas salmonicida/genetics , Electroporation/methods , Plasmids/genetics , Animals , DNA, Bacterial/genetics , Fishes/microbiology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...