Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 11: 1414572, 2024.
Article in English | MEDLINE | ID: mdl-38915940

ABSTRACT

Introduction: The Macrophage Migration Inhibitory Factor (MIF), a key pro-inflammatory mediator, is responsible for modulating immune responses. An array of inflammatory and autoimmune diseases has been linked to the dysregulated activity of MIF. The significance in physiological as well as pathophysiological phenomena underscores the potential of MIF as an attractive target with pharmacological relevance. Extensive research in past has uncovered a number of inhibitors, while the ISO-1, or (S, R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester being recognized as a benchmark standard so far. Recent work by Yang and coworkers identified five promising dietary flavonoids, with superior activity compared to the standard ISO-1. Nevertheless, the exact atomic-level inhibitory mechanism is still elusive. Methods: To improve the dynamic research, and rigorously characterize, and compare molecular signatures of MIF complexes with ISO-1 and flavonoids, principal component analysis (PCA) was linked with molecular dynamics (MD) simulations and binding free energy calculations. Results: The results suggest that by blocking the tautomerase site these small molecule inhibitors could modify the MIF activity by disrupting the intrinsic dynamics in particular functional areas. The stability matrices revealed the average deviation values ranging from 0.27-0.32 nm while the residue level fluctuations indicated that binding of the selected flavonoids confer enhanced stability relative to the ISO-1. Furthermore, the gyration values extracted from the simulated trajectories were found in the range of 1.80-1.83 nm. Discussion: Although all the tested flavonoids demonstrated remarkable results, the one obtained for the potent inhibitors, particularly Morin and Amentoflavone exhibited a good correlation with biological activity. The PCA results featured relatively less variance and constricted conformational landscape than others. The stable ensembles and reduced variation in turns might be the possible reasons for their outstanding performance documented previously. The results from the present exploration provide a comprehensive understanding of the molecular complexes formed by flavonoids and MIF, shedding light on their potential roles and impacts. Future studies on MIF inhibitors may benefit from the knowledge gathered from this investigation.

2.
Future Med Chem ; 14(21): 1507-1526, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36268762

ABSTRACT

Background: To discover novel lead molecules against diabetes, Alzheimer's disease and oxidative stress, a library of arylated pyrazole-fused pyran derivatives, 1-20, were synthesized in a one-pot reaction. Materials & methods:1H-NMR spectroscopic and electron ionization mass spectrometry techniques were used to characterize the synthetic hybrid molecules 1-20. Analogs were screened against four indispensable therapeutic targets, including α-amylase, α-glucosidase, acetylcholinesterase and butyrylcholinesterase enzymes. Results: Except for derivatives 17 and 18, all other compounds exhibited varying degrees of inhibitory activities against target enzymes. The kinetic studies revealed that the synthetic molecules followed a competitive-type mode of inhibition for α-amylase and acetylcholinesterase enzymes, as well as a non-competitive mode of inhibition for α-glucosidase and butyrylcholinesterase enzymes. In addition, molecular docking studies identified crucial binding interactions of ligands with the enzyme's active site. Conclusion: These molecules may serve as a potential drug candidate to cure diabetes, Alzheimer's disease and oxidative stress in the future.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Cholinesterase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Pyrans/therapeutic use , Kinetics , alpha-Amylases/metabolism , Pyrazoles/therapeutic use , Structure-Activity Relationship , Molecular Structure
3.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35209243

ABSTRACT

Dental caries, a global oral health concern, is a biofilm-mediated disease. Streptococcus mutans, the most prevalent oral microbiota, produces extracellular enzymes, including glycosyltransferases responsible for sucrose polymerization. In bacterial communities, the biofilm matrix confers resistance to host immune responses and antibiotics. Thus, in cases of chronic dental caries, inhibiting bacterial biofilm assembly should prevent demineralization of tooth enamel, thereby preventing tooth decay. A high throughput screening was performed in the present study to identify small molecule inhibitors of S. mutans glycosyltransferases. Multiple pharmacophore models were developed, validated with multiple datasets, and used for virtual screening against large chemical databases. Over 3000 drug-like hits were obtained that were analyzed to explore their binding mode. Finally, six compounds that showed good binding affinities were further analyzed for ADME (absorption, distribution, metabolism, and excretion) properties. The obtained in silico hits were evaluated for in vitro biofilm formation. The compounds displayed excellent antibiofilm activities with minimum inhibitory concentration (MIC) values of 15.26-250 µg/mL.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Models, Molecular , Streptococcus mutans/drug effects , Anti-Bacterial Agents/chemical synthesis , Humans , Microbial Sensitivity Tests , Molecular Conformation , Molecular Structure , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...