Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 135: 10-16, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27664371

ABSTRACT

An outdoor microcosm was performed with tadpoles (Rhinella arenarum) exposed to 125µgL-1 chlorpyrifos and fed two types of food, i.e., lettuce (Lactuca sativa) and a formulated commercial pellet. Acetylcholinesterase (AChE) and carboxylesterase (CbE) activities were measured in liver and intestine after 10 days of pesticide exposure. Non-exposed tadpoles fed lettuce had an intestinal AChE activity almost two-fold higher than that of pellet-fed tadpoles. No significant differences were observed, however, in liver AChE activity between diets. Likewise, intestinal CbE activity - measured using two substrates, i.e. 1-naphthyl acetate (1-NA) and 4-nitrophenyl valerate (4-NPV) - was higher in tadpoles fed lettuce than in those fed pellets. However, the diet-dependent response of liver CbE activity was opposite to that in the intestine. Chlorpyrifos caused a significant inhibition of both esterase activities, which was tissue- and diet-specific. The highest inhibition degree was found in the intestinal AChE and CbE activities of lettuce-fed tadpoles (42-78% of controls) compared with pellet-fed tadpoles (<60%). Although chlorpyrifos significantly inhibited liver CbE activity of the group fed lettuce, this effect was not observed in the group fed pellets. In general, intestinal CbE activity was more sensitive to chlorpyrifos inhibition than AChE activity. This finding, together with the high levels of basal CbE activity found in the intestine, may be understood as a detoxification system able to reduce intestinal OP uptake. Moreover, the results of this study suggest that diet is a determinant factor in toxicity testing with tadpoles to assess OP toxicity, because it modulates levels of this potential detoxifying enzyme activity.


Subject(s)
Carboxylesterase/metabolism , Chlorpyrifos/toxicity , Environmental Pollutants/toxicity , Larva/drug effects , Pesticides/toxicity , Acetylcholinesterase/metabolism , Animals , Argentina , Bufo arenarum , Diet , Environmental Monitoring , Intestines/drug effects , Intestines/enzymology , Larva/enzymology , Nitrobenzenes , Valerates
2.
Chemosphere ; 87(11): 1348-54, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22386454

ABSTRACT

Contamination of aquatic systems is a major environmental stress that can interfere with predator-prey interactions, altering prey or predator behavior differentially. We determined toxicity parameters of the fungicide trifloxystrobin (TFS) and examined its effects on predation rate, using a fish predator (Synbranchus marmoratus) and four anuran tadpole species as prey (Rhinella arenarum, Physalaemus santafecinus, Leptodactylus latrans, and Elachistocleis bicolor). TFS was not equally toxic to the four tadpole species, E. bicolor being the most sensitive species, followed by P. santafecinus, R. arenarum, and L. latrans. Predation rates were evaluated using different treatments that combined predator and prey exposed or not to this fungicide. TFS would alter the outcome of eel-tadpole interaction by reducing prey movements; thus, prey detection would decrease and therefore tadpole survival would increase. In addition, eels preyed selectively upon non-exposed tadpoles avoiding the exposed ones almost all throughout the period evaluated. Predation rate differed among prey species; such differences were not due to TFS exposure, but to interspecific differences in behavior. The mechanism that would explain TFS-induced reduction in predation rates remains unclear; however, what is clear is that sublethal TFS concentrations have the potential to alter prey behavior, thereby indirectly altering predator-prey interactions. In addition, we consider that predator-prey relationships are measurable responses of toxicant exposure and provide ecological insight into how contaminants modify predator-prey interactions.


Subject(s)
Acetates/toxicity , Anura/physiology , Behavior, Animal/drug effects , Eels/physiology , Fungicides, Industrial/toxicity , Imines/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anura/growth & development , Food Chain , Larva/drug effects , Methacrylates/toxicity , Strobilurins , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...