Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; 37(11): 1844-1850, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36054814

ABSTRACT

A solid phase extraction (SPE) system for sesquiterpene lactones of damsissa was developed utilising molecularly imprinted polymers (MIPs). The prepared MIPs had a mesoporous structure and particle size of ≈2.65 µm with 3.99 nm pore size. Additionally, MIPs exhibited high thermal stability with degradation temperature between 209 and 459 °C. Optimized MIP-SPE protocol conditions were set at loading step: 1 mL ethanol; washing step: 1 mL water; eluting step: 4 mL methanol. Developed MIP-SPE system showed a binding capacity of 66.66 mg/g based on Langmuir isotherm which was selected as the best fitting model isotherm. Good selectivity coefficients were observed for neoambrosin of 2.37, 1.31 and 1.14 against umbelliferone, quercetin glucoside and p-coumaric acid, respectively. Furthermore, the proposed MIP-SPE protocol displayed some potential in the isolation of sesquiterpene lactones from damsissa plant extract and laid a foundation for the development of more selective MIPs to nonpolar natural products.


Subject(s)
Molecular Imprinting , Sesquiterpenes , Molecularly Imprinted Polymers , Molecular Imprinting/methods , Polymers/chemistry , Ambrosia , Solid Phase Extraction/methods , Lactones , Adsorption
2.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208796

ABSTRACT

On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (Mw) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed-identifying both macro and micro routes promoting favourable bioplastics' production, processability and performance.

3.
Materials (Basel) ; 14(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670834

ABSTRACT

An innovative antimicrobial technology for plastic surfaces is presented. We report the synthesis and scale-up of triangular silver nanoplates (TSNPs) and their integration into polycaprolactone (PCL) and polylactic acid (PLA) polymers through a solvent-casting technique. The TSNPs have a high geometric aspect ratio and strong local surface plasmon resonance (LSPR) response, which provides an effective tool for monitoring their integrity during processing and integration with the biodegradable plastics. An aqueous-based seed-mediated chemical method was used to synthesize the TSNPs, and characterisation was carried out using TEM and UV (Ultraviolet)-VIS (Visible) spectroscopy to measure LSPR profiles. The UV-VIS spectra of silver seeds and TSNPs exhibited characteristic peaks at 395 and 600 nm respectively. Synthesized TSNPs were coated with thiol-terminated polyethylene glycol (SH-PEG) and transferred into chloroform in order to effect compatibility with PCL and PLA. TSNP/PCL and TSNP/PLA composite films were prepared by solvent casting. The morphological structure, thermal, mechanical, and antimicrobial properties of the TSNP-incorporated composite films were evaluated. Results showed the TSNP-treated films had a rougher surface than the bare films. Insignificant changes in the thermal properties of TSNP-treated films compared to bare ones were also observed, which indicated the thermal stability of the composite films. The tensile strength and antimicrobial properties of the composite films were increased after TSNP incorporation. TSNP/PCL and TSNP/PLA films exhibited improved antimicrobial activity against Escherichia coli and Staphylococcus aureus with antimicrobial effect (AE) values ranging between 0.10 and 0.35. The obtained results and demonstrated TSNP production scalability validate the TSNP treated PCL and PLA films as a composite material with desirable antimicrobial effect for wide-ranging surface applications.

4.
Polymers (Basel) ; 14(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35012131

ABSTRACT

Effective interfacing of energy-efficient and biobased technologies presents an all-green route to achieving continuous circular production, utilization, and reproduction of plastics. Here, we show combined ultragreen chemical and biocatalytic depolymerization of polyethylene terephthalate (PET) using deep eutectic solvent (DES)-based low-energy microwave (MW) treatment followed by enzymatic hydrolysis. DESs are emerging as attractive sustainable catalysts due to their low toxicity, biodegradability, and unique biological compatibility. A green DES with triplet composition of choline chloride, glycerol, and urea was selected for PET depolymerization under MW irradiation without the use of additional depolymerization agents. Treatment conditions were studied using Box-Behnken design (BBD) with respect to MW irradiation time, MW power, and volume of DES. Under the optimized conditions of 20 mL DES volume, 260 W MW power, and 3 min MW time, a significant increase in the carbonyl index and PET percentage weight loss was observed. The combined MW-assisted DES depolymerization and enzymatic hydrolysis of the treated PET residue using LCC variant ICCG resulted in a total monomer conversion of ≈16% (w/w) in the form of terephthalic acid, mono-(2-hydroxyethyl) terephthalate, and bis-(2-hydroxyethyl) terephthalate. Such high monomer conversion in comparison to enzymatically hydrolyzed virgin PET (1.56% (w/w)) could be attributed to the recognized depolymerization effect of the selected DES MW treatment process. Hence, MW-assisted DES technology proved itself as an efficient process for boosting the biodepolymerization of PET in an ultrafast and eco-friendly manner.

5.
RSC Adv ; 10(15): 8703-8708, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-35496538

ABSTRACT

In the continuous search for effective cancer treatments, we here report a novel anticancer nanoparticulate system composed of jasmine oil (JO), an essential oil with proven anticancer activity and pectin/chitosan composite nanoparticles (Pec/CS NPs) as encapsulating materials to overcome JO's solubility and sensitivity problems using a green ionotropic gelation method. Pec/CS/JO NPs were formulated using Box-Behnken design (BBD) to estimate the interactions and effects of studied formulation variables on particle size, zeta potential and encapsulation efficiency to develop an optimized Pec/CS nanoformulation. The nano-encapsulation system preserved the consistency of total phenolic contents in JO and amended its thermal stability by 1.64 fold. The antioxidant potency of JO was enhanced after encapsulation by 96.28%. Consequently, the cytotoxic activity of bare Pec/CS NPs, pure JO and encapsulated JO in Pec/CS NPs against (MCF-7) breast cancer cells and (L-929) normal cells was evaluated using MTT assay. Encapsulated JO was more potent than pure JO with ≈13 fold improvement in anticancer activity, whereas the cell viability of normal cells wasn't affected but was rather enhanced when treated with Pec/CS NPs.

6.
RSC Adv ; 10(67): 40697-40708, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-35519177

ABSTRACT

The present study investigates a synergistic adsorption/photodegradation technique catalyzed by a pectin/chitosan/zinc oxide (Pec/CS/ZnO) nanocomposite for the removal of carbamazepine (CBZ) in aqueous solutions under direct sunlight. The Pec/CS/ZnO nanocomposite was prepared by an inotropic gelation method and was characterized using different techniques. The adsorption/photocatalytic activity of the Pec/CS/ZnO nanocomposite for the remediation of CBZ was optimized using Box-Behnken design under response surface methodology. The examined parameters included the amount of Pec/CS/ZnO nanocomposite (0.25-0.75 g L-1), pH (4-10), and run time for adsorption/photo-irradiation (1-5 hours). The efficiency of CBZ degradation was calculated in terms of changes in CBZ concentration using a validated chromatographic assay. The optimum conditions for the remediation of CBZ were 0.5 g L-1 Pec/CS/ZnO nanocomposite, pH 4, and 3 hour run time. Under such conditions, the degradation efficiency of 10 mg L-1 CBZ was found to be 69.5% with a rate constant (k) of 0.00737 min-1 and half-life time of 94 min. The efficiency of the Pec/CS/ZnO nanocomposite for CBZ remediation was found to be stable and consistent after three cycles of reuse. The presence of other pharmaceutical contaminants such as acetaminophen in wastewater samples was also investigated. The efficiency of CBZ degradation was not significantly affected by the addition of acetaminophen in a 0-15 mg L-1 concentration range which confirmed the selectivity and efficiency of the proposed method for CBZ degradation and removal.

7.
J Chromatogr A ; 1561: 28-38, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-29798806

ABSTRACT

Cytotoxic drugs used in cancer chemotherapy require the continuous monitoring of their plasma concentration levels for dose adjustment purposes. Such condition necessitates the presence of a sensitive technique for accurate extraction and determination of these drugs together with their active metabolites. In this study a novel solid phase extraction technique using magnetic molecularly imprinted nanoparticles (MMI-SPE) is combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) to extract and determine the anti-leukemic agent; 6-mercaptopurine (6-MP) and its active metabolite thioguanine (TG) in human plasma. The magnetic molecularly imprinted nanoparticles (Fe3O4@MIP NPs) were synthesized via precipitation polymerization technique and were characterized using different characterization methods A computational approach was adopted to help in the choice of the monomer used in the fabrication process. The Fe3O4@MIPs NPs possessed a highly improved imprinting efficiency, fast adsorption kinetics following 2nd order kinetics and good adsorption capacity of 1.0 mg/g. The presented MMI-SPE provided the optimum approach in comparison to other reported ones to achieve good extraction recovery and matrix effect of trace levels of 6-MP and TG from plasma. Chromatographic separation was carried out using a validated LC-MS/MS assay and recovery, matrix effect and process efficiency were evaluated. Recovery of 6-MP and TG was in the range of 85.94-103.03%, while, matrix effect showed a mean percentage recovery of 85.94-97.62% and process efficiency of 85.54-96.18%. The proposed extraction technique is simple, effective and can be applicable to the extraction and analysis of other pharmaceutical compounds in complex matrices for therapeutic drug monitoring applications.


Subject(s)
Magnetics , Mercaptopurine/blood , Molecular Imprinting/methods , Nanoparticles/chemistry , Polymers/chemistry , Solid Phase Extraction/methods , Thioguanine/blood , Chromatography, High Pressure Liquid/methods , Humans , Mercaptopurine/isolation & purification , Thioguanine/isolation & purification
8.
Environ Sci Pollut Res Int ; 25(19): 18476-18483, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29696545

ABSTRACT

Novel magnetite nanoparticles (NPs) modified with pectin coating were fabricated, characterized, and evaluated as potential draw solute in a forward osmosis (FO) process for water desalination applications. The prepared NPs had a spherical shape with an average diameter of 200 nm and saturation magnetization of 23.13 emu/g. Thermogravimetric analysis (TGA) and FTIR spectra elucidated the successful pectin coating on magnetite surface. The potential use of the fabricated NPs in water desalination was conducted via a newly developed lab-scale FO system. Deionized water, saline water (0.2, 0.5, and 1 g% NaCl solution), and real well water (TDS = 0.9 g%) were used as feed solutions. In all experiments, the water flux gradually decreased along with the extension of experimental time and NaCl rejection rate by the FO membrane was measured to be higher than 95%. Moreover, it was found that the pectin-coated magnetite NPs demonstrated to be able to draw clean water across the FO membrane from well water with a remarkable salt rejection of 97%. Thus, it is believed that the proposed FO system using pectin-coated magnetite NPs as draw solute can be a promising technique for desalination of well waters in an environmental-friendly and energy-saving manner.


Subject(s)
Magnetite Nanoparticles/chemistry , Membranes, Artificial , Pectins/chemistry , Water Purification/methods , Groundwater/chemistry , Osmosis , Sodium Chloride , Solutions , Surface Properties , Water Pollutants, Chemical , Water Wells
9.
J Nanosci Nanotechnol ; 18(2): 872-878, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448509

ABSTRACT

In our present work some biological tests were carried out to assess the biocompatibility of nicotinic acid coated magnetite nanorods. Pure and coated nanorods were injected intraperitoneally to cholesterol fed mice with dose values of 25, 50 mg/Kg. Investigations were done on treated mice with/without exposure to low frequency electromagnetic field (EMF) and samples were collected fourteen days post treatment. Toxicological effects were evaluated using Micronucleus and DNA fragmentation analysis. The results indicated that low dose (25 mg/Kg) nicotinic acid coated nanorods had insignificant toxicological effects in comparison to that of control group. Lipid profile analysis and gene expression of atheroprotective (eNOS) and atherogenic (p65) genes were also investigated. It was found that experimental groups treated with low dose nicotinic acid coated magnetite nanorods and exposed to EMF showed interesting alterations in mice lipid profile. As a result, an insignificant but slight increase in gene expression levels of eNOS and a significant decrease in p65 gene expression were observed. Our study suggests that our proposed magnetic nanosystem in combination with EMF has good biocompatibility and can be a potential drug precursor with therapeutic values.


Subject(s)
Ferrosoferric Oxide , Lipids/analysis , Nanotubes , Niacin , Animals , Electromagnetic Fields , Genetic Testing , Materials Testing , Mice
10.
RSC Adv ; 8(26): 14280-14292, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540735

ABSTRACT

Analytical methods should be accurate and specific to measure plasma drug concentration. Nevertheless, current sample preparation techniques suffer from limitations, including matrix interference and intensive sample preparation. In this study, a novel technique was proposed for the synthesis of a molecularly imprinted polymer (MIP) on magnetic Fe3O4 nanoparticles (NPs) with uniform core-shell structure. The Fe3O4@MIPs NPs were then applied to separate and enrich an antiepileptic drug, levetiracetam, from human plasma. A computational approach was developed to screen the functional monomers and polymerization solvents to provide a suitable design for the synthesized MIP. Different analysis techniques and re-binding experiments were performed to characterize the Fe3O4@MIP NPs, as well as to identify optimal conditions for the extraction process. Adsorption isotherms were best fitted to the Langmuir model and adsorption kinetics were modeled with pseudo-second-order kinetics. The Fe3O4@MIP NPs showed reasonable adsorption capacity and improved imprinting efficiency. A validated colorimetric assay was introduced as a comparable method to a validated HPLC assay for the quantitation of levetiracetam in plasma in the range of 10-80 µg mL-1 after extraction. The results from the HPLC and colorimetric assays showed good precision (between 1.08% and 9.87%) and recoveries (between 94% and 106%) using the Fe3O4@MIP NPs. The limit of detection and limit of quantification were estimated to be 2.58 µg mL-1 and 7.81 µg mL-1, respectively for HPLC assay and 2.32 µg mL-1 and 7.02 µg mL-1, respectively for colorimetric assay. It is believed that synthesized Fe3O4@MIP NPs as a sample clean-up technique combined with the proposed assays can be used for determination of levetiracetam in plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...