Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Comput Biol Med ; 178: 108798, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925085

ABSTRACT

Skin cancer (SC) significantly impacts many individuals' health all over the globe. Hence, it is imperative to promptly identify and diagnose such conditions at their earliest stages using dermoscopic imaging. Computer-aided diagnosis (CAD) methods relying on deep learning techniques especially convolutional neural networks (CNN) can effectively address this issue with outstanding outcomes. Nevertheless, such black box methodologies lead to a deficiency in confidence as dermatologists are incapable of comprehending and verifying the predictions that were made by these models. This article presents an advanced an explainable artificial intelligence (XAI) based CAD system named "Skin-CAD" which is utilized for the classification of dermoscopic photographs of SC. The system accurately categorises the photographs into two categories: benign or malignant, and further classifies them into seven subclasses of SC. Skin-CAD employs four CNNs of different topologies and deep layers. It gathers features out of a pair of deep layers of every CNN, particularly the final pooling and fully connected layers, rather than merely depending on attributes from a single deep layer. Skin-CAD applies the principal component analysis (PCA) dimensionality reduction approach to minimise the dimensions of pooling layer features. This also reduces the complexity of the training procedure compared to using deep features from a CNN that has a substantial size. Furthermore, it combines the reduced pooling features with the fully connected features of each CNN. Additionally, Skin-CAD integrates the dual-layer features of the four CNNs instead of entirely depending on the features of a single CNN architecture. In the end, it utilizes a feature selection step to determine the most important deep attributes. This helps to decrease the general size of the feature set and streamline the classification process. Predictions are analysed in more depth using the local interpretable model-agnostic explanations (LIME) approach. This method is used to create visual interpretations that align with an already existing viewpoint and adhere to recommended standards for general clarifications. Two benchmark datasets are employed to validate the efficiency of Skin-CAD which are the Skin Cancer: Malignant vs. Benign and HAM10000 datasets. The maximum accuracy achieved using Skin-CAD is 97.2 % and 96.5 % for the Skin Cancer: Malignant vs. Benign and HAM10000 datasets respectively. The findings of Skin-CAD demonstrate its potential to assist professional dermatologists in detecting and classifying SC precisely and quickly.

2.
Sci Rep ; 14(1): 6914, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38519513

ABSTRACT

Colorectal cancer (CRC) exhibits a significant death rate that consistently impacts human lives worldwide. Histopathological examination is the standard method for CRC diagnosis. However, it is complicated, time-consuming, and subjective. Computer-aided diagnostic (CAD) systems using digital pathology can help pathologists diagnose CRC faster and more accurately than manual histopathology examinations. Deep learning algorithms especially convolutional neural networks (CNNs) are advocated for diagnosis of CRC. Nevertheless, most previous CAD systems obtained features from one CNN, these features are of huge dimension. Also, they relied on spatial information only to achieve classification. In this paper, a CAD system is proposed called "Color-CADx" for CRC recognition. Different CNNs namely ResNet50, DenseNet201, and AlexNet are used for end-to-end classification at different training-testing ratios. Moreover, features are extracted from these CNNs and reduced using discrete cosine transform (DCT). DCT is also utilized to acquire spectral representation. Afterward, it is used to further select a reduced set of deep features. Furthermore, DCT coefficients obtained in the previous step are concatenated and the analysis of variance (ANOVA) feature selection approach is applied to choose significant features. Finally, machine learning classifiers are employed for CRC classification. Two publicly available datasets were investigated which are the NCT-CRC-HE-100 K dataset and the Kather_texture_2016_image_tiles dataset. The highest achieved accuracy reached 99.3% for the NCT-CRC-HE-100 K dataset and 96.8% for the Kather_texture_2016_image_tiles dataset. DCT and ANOVA have successfully lowered feature dimensionality thus reducing complexity. Color-CADx has demonstrated efficacy in terms of accuracy, as its performance surpasses that of the most recent advancements.


Subject(s)
Colorectal Neoplasms , Deep Learning , Humans , Neural Networks, Computer , Machine Learning , Algorithms , Colorectal Neoplasms/diagnosis
4.
Biomimetics (Basel) ; 9(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38534873

ABSTRACT

The severe effects of attention deficit hyperactivity disorder (ADHD) among adolescents can be prevented by timely identification and prompt therapeutic intervention. Traditional diagnostic techniques are complicated and time-consuming because they are subjective-based assessments. Machine learning (ML) techniques can automate this process and prevent the limitations of manual evaluation. However, most of the ML-based models extract few features from a single domain. Furthermore, most ML-based studies have not examined the most effective electrode placement on the skull, which affects the identification process, while others have not employed feature selection approaches to reduce the feature space dimension and consequently the complexity of the training models. This study presents an ML-based tool for automatically identifying ADHD entitled "ADHD-AID". The present study uses several multi-resolution analysis techniques including variational mode decomposition, discrete wavelet transform, and empirical wavelet decomposition. ADHD-AID extracts thirty features from the time and time-frequency domains to identify ADHD, including nonlinear features, band-power features, entropy-based features, and statistical features. The present study also looks at the best EEG electrode placement for detecting ADHD. Additionally, it looks into the location combinations that have the most significant impact on identification accuracy. Additionally, it uses a variety of feature selection methods to choose those features that have the greatest influence on the diagnosis of ADHD, reducing the classification's complexity and training time. The results show that ADHD-AID has provided scores for accuracy, sensitivity, specificity, F1-score, and Mathew correlation coefficients of 0.991, 0.989, 0.992, 0.989, and 0.982, respectively, in identifying ADHD with 10-fold cross-validation. Also, the area under the curve has reached 0.9958. ADHD-AID's results are significantly higher than those of all earlier studies for the detection of ADHD in adolescents. These notable and trustworthy findings support the use of such an automated tool as a means of assistance for doctors in the prompt identification of ADHD in youngsters.

5.
Biomimetics (Basel) ; 8(5)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37754168

ABSTRACT

Rice paddy diseases significantly reduce the quantity and quality of crops, so it is essential to recognize them quickly and accurately for prevention and control. Deep learning (DL)-based computer-assisted expert systems are encouraging approaches to solving this issue and dealing with the dearth of subject-matter specialists in this area. Nonetheless, a major generalization obstacle is posed by the existence of small discrepancies between various classes of paddy diseases. Numerous studies have used features taken from a single deep layer of an individual complex DL construction with many deep layers and parameters. All of them have relied on spatial knowledge only to learn their recognition models trained with a large number of features. This study suggests a pipeline called "RiPa-Net" based on three lightweight CNNs that can identify and categorize nine paddy diseases as well as healthy paddy. The suggested pipeline gathers features from two different layers of each of the CNNs. Moreover, the suggested method additionally applies the dual-tree complex wavelet transform (DTCWT) to the deep features of the first layer to obtain spectral-temporal information. Additionally, it incorporates the deep features of the first layer of the three CNNs using principal component analysis (PCA) and discrete cosine transform (DCT) transformation methods, which reduce the dimension of the first layer features. The second layer's spatial deep features are then combined with these fused time-frequency deep features. After that, a feature selection process is introduced to reduce the size of the feature vector and choose only those features that have a significant impact on the recognition process, thereby further reducing recognition complexity. According to the results, combining deep features from two layers of different lightweight CNNs can improve recognition accuracy. Performance also improves as a result of the acquired spatial-spectral-temporal information used to learn models. Using 300 features, the cubic support vector machine (SVM) achieves an outstanding accuracy of 97.5%. The competitive ability of the suggested pipeline is confirmed by a comparison of the experimental results with findings from previously conducted research on the recognition of paddy diseases.

6.
Digit Health ; 9: 20552076231180054, 2023.
Article in English | MEDLINE | ID: mdl-37312961

ABSTRACT

Objective: Recently, monkeypox virus is slowly evolving and there are fears it will spread as COVID-19. Computer-aided diagnosis (CAD) based on deep learning approaches especially convolutional neural network (CNN) can assist in the rapid determination of reported incidents. The current CADs were mostly based on an individual CNN. Few CADs employed multiple CNNs but did not investigate which combination of CNNs has a greater impact on the performance. Furthermore, they relied on only spatial information of deep features to train their models. This study aims to construct a CAD tool named "Monkey-CAD" that can address the previous limitations and automatically diagnose monkeypox rapidly and accurately. Methods: Monkey-CAD extracts features from eight CNNs and then examines the best possible combination of deep features that influence classification. It employs discrete wavelet transform (DWT) to merge features which diminishes fused features' size and provides a time-frequency demonstration. These deep features' sizes are then further reduced via an entropy-based feature selection approach. These reduced fused features are finally used to deliver a better representation of the input features and feed three ensemble classifiers. Results: Two freely accessible datasets called Monkeypox skin image (MSID) and Monkeypox skin lesion (MSLD) are employed in this study. Monkey-CAD could discriminate among cases with and without Monkeypox achieving an accuracy of 97.1% for MSID and 98.7% for MSLD datasets respectively. Conclusions: Such promising results demonstrate that the Monkey-CAD can be employed to assist health practitioners. They also verify that fusing deep features from selected CNNs can boost performance.

7.
Chemometr Intell Lab Syst ; 233: 104750, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36619376

ABSTRACT

Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.

8.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36672981

ABSTRACT

One of the most serious and dangerous ocular problems in premature infants is retinopathy of prematurity (ROP), a proliferative vascular disease. Ophthalmologists can use automatic computer-assisted diagnostic (CAD) tools to help them make a safe, accurate, and low-cost diagnosis of ROP. All previous CAD tools for ROP diagnosis use the original fundus images. Unfortunately, learning the discriminative representation from ROP-related fundus images is difficult. Textural analysis techniques, such as Gabor wavelets (GW), can demonstrate significant texture information that can help artificial intelligence (AI) based models to improve diagnostic accuracy. In this paper, an effective and automated CAD tool, namely GabROP, based on GW and multiple deep learning (DL) models is proposed. Initially, GabROP analyzes fundus images using GW and generates several sets of GW images. Next, these sets of images are used to train three convolutional neural networks (CNNs) models independently. Additionally, the actual fundus pictures are used to build these networks. Using the discrete wavelet transform (DWT), texture features retrieved from every CNN trained with various sets of GW images are combined to create a textural-spectral-temporal demonstration. Afterward, for each CNN, these features are concatenated with spatial deep features obtained from the original fundus images. Finally, the previous concatenated features of all three CNN are incorporated using the discrete cosine transform (DCT) to lessen the size of features caused by the fusion process. The outcomes of GabROP show that it is accurate and efficient for ophthalmologists. Additionally, the effectiveness of GabROP is compared to recently developed ROP diagnostic techniques. Due to GabROP's superior performance compared to competing tools, ophthalmologists may be able to identify ROP more reliably and precisely, which could result in a reduction in diagnostic effort and examination time.

9.
Diagnostics (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36552933

ABSTRACT

Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.

10.
Digit Health ; 8: 20552076221124432, 2022.
Article in English | MEDLINE | ID: mdl-36105626

ABSTRACT

With the current health crisis caused by the COVID-19 pandemic, patients have become more anxious about infection, so they prefer not to have direct contact with doctors or clinicians. Lately, medical scientists have confirmed that several diseases exhibit corresponding specific features on the face the face. Recent studies have indicated that computer-aided facial diagnosis can be a promising tool for the automatic diagnosis and screening of diseases from facial images. However, few of these studies used deep learning (DL) techniques. Most of them focused on detecting a single disease, using handcrafted feature extraction methods and conventional machine learning techniques based on individual classifiers trained on small and private datasets using images taken from a controlled environment. This study proposes a novel computer-aided facial diagnosis system called FaceDisNet that uses a new public dataset based on images taken from an unconstrained environment and could be employed for forthcoming comparisons. It detects single and multiple diseases. FaceDisNet is constructed by integrating several spatial deep features from convolutional neural networks of various architectures. It does not depend only on spatial features but also extracts spatial-spectral features. FaceDisNet searches for the fused spatial-spectral feature set that has the greatest impact on the classification. It employs two feature selection techniques to reduce the large dimension of features resulting from feature fusion. Finally, it builds an ensemble classifier based on stacking to perform classification. The performance of FaceDisNet verifies its ability to diagnose single and multiple diseases. FaceDisNet achieved a maximum accuracy of 98.57% and 98% after the ensemble classification and feature selection steps for binary and multiclass classification categories. These results prove that FaceDisNet is a reliable tool and could be employed to avoid the difficulties and complications of manual diagnosis. Also, it can help physicians achieve accurate diagnoses without the need for physical contact with the patients.

11.
Appl Soft Comput ; 128: 109401, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35919069

ABSTRACT

The quick diagnosis of the novel coronavirus (COVID-19) disease is vital to prevent its propagation and improve therapeutic outcomes. Computed tomography (CT) is believed to be an effective tool for diagnosing COVID-19, however, the CT scan contains hundreds of slices that are complex to be analyzed and could cause delays in diagnosis. Artificial intelligence (AI) especially deep learning (DL), could facilitate and speed up COVID-19 diagnosis from such scans. Several studies employed DL approaches based on 2D CT images from a single view, nevertheless, 3D multiview CT slices demonstrated an excellent ability to enhance the efficiency of COVID-19 diagnosis. The majority of DL-based studies utilized the spatial information of the original CT images to train their models, though, using spectral-temporal information could improve the detection of COVID-19. This article proposes a DL-based pipeline called CoviWavNet for the automatic diagnosis of COVID-19. CoviWavNet uses a 3D multiview dataset called OMNIAHCOV. Initially, it analyzes the CT slices using multilevel discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to train three ResNet CNN models. These ResNets use the spectral-temporal information of such images to perform classification. Subsequently, it investigates whether the combination of spatial information with spectral-temporal information could improve the diagnostic accuracy of COVID-19. For this purpose, it extracts deep spectral-temporal features from such ResNets using transfer learning and integrates them with deep spatial features extracted from the same ResNets trained with the original CT slices. Then, it utilizes a feature selection step to reduce the dimension of such integrated features and use them as inputs to three support vector machine (SVM) classifiers. To further validate the performance of CoviWavNet, a publicly available benchmark dataset called SARS-COV-2-CT-Scan is employed. The results of CoviWavNet have demonstrated that using the spectral-temporal information of the DWT heatmap images to train the ResNets is superior to utilizing the spatial information of the original CT images. Furthermore, integrating deep spectral-temporal features with deep spatial features has enhanced the classification accuracy of the three SVM classifiers reaching a final accuracy of 99.33% and 99.7% for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets respectively. These accuracies verify the outstanding performance of CoviWavNet compared to other related studies. Thus, CoviWavNet can help radiologists in the rapid and accurate diagnosis of COVID-19 diagnosis.

12.
Biosensors (Basel) ; 12(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35624600

ABSTRACT

Diagnosing COVID-19 accurately and rapidly is vital to control its quick spread, lessen lockdown restrictions, and decrease the workload on healthcare structures. The present tools to detect COVID-19 experience numerous shortcomings. Therefore, novel diagnostic tools are to be examined to enhance diagnostic accuracy and avoid the limitations of these tools. Earlier studies indicated multiple structures of cardiovascular alterations in COVID-19 cases which motivated the realization of using ECG data as a tool for diagnosing the novel coronavirus. This study introduced a novel automated diagnostic tool based on ECG data to diagnose COVID-19. The introduced tool utilizes ten deep learning (DL) models of various architectures. It obtains significant features from the last fully connected layer of each DL model and then combines them. Afterward, the tool presents a hybrid feature selection based on the chi-square test and sequential search to select significant features. Finally, it employs several machine learning classifiers to perform two classification levels. A binary level to differentiate between normal and COVID-19 cases, and a multiclass to discriminate COVID-19 cases from normal and other cardiac complications. The proposed tool reached an accuracy of 98.2% and 91.6% for binary and multiclass levels, respectively. This performance indicates that the ECG could be used as an alternative means of diagnosis of COVID-19.


Subject(s)
COVID-19 , Deep Learning , Algorithms , COVID-19/diagnosis , Communicable Disease Control , Electrocardiography , Humans
13.
Digit Health ; 8: 20552076221092543, 2022.
Article in English | MEDLINE | ID: mdl-35433024

ABSTRACT

The accurate and rapid detection of the novel coronavirus infection, coronavirus is very important to prevent the fast spread of such disease. Thus, reducing negative effects that influenced many industrial sectors, especially healthcare. Artificial intelligence techniques in particular deep learning could help in the fast and precise diagnosis of coronavirus from computed tomography images. Most artificial intelligence-based studies used the original computed tomography images to build their models; however, the integration of texture-based radiomics images and deep learning techniques could improve the diagnostic accuracy of the novel coronavirus diseases. This study proposes a computer-assisted diagnostic framework based on multiple deep learning and texture-based radiomics approaches. It first trains three Residual Networks (ResNets) deep learning techniques with two texture-based radiomics images including discrete wavelet transform and gray-level covariance matrix instead of the original computed tomography images. Then, it fuses the texture-based radiomics deep features sets extracted from each using discrete cosine transform. Thereafter, it further combines the fused texture-based radiomics deep features obtained from the three convolutional neural networks. Finally, three support vector machine classifiers are utilized for the classification procedure. The proposed method is validated experimentally on the benchmark severe respiratory syndrome coronavirus 2 computed tomography image dataset. The accuracies attained indicate that using texture-based radiomics (gray-level covariance matrix, discrete wavelet transform) images for training the ResNet-18 (83.22%, 74.9%), ResNet-50 (80.94%, 78.39%), and ResNet-101 (80.54%, 77.99%) is better than using the original computed tomography images (70.34%, 76.51%, and 73.42%) for ResNet-18, ResNet-50, and ResNet-101, respectively. Furthermore, the sensitivity, specificity, accuracy, precision, and F1-score achieved using the proposed computer-assisted diagnostic after the two fusion steps are 99.47%, 99.72%, 99.60%, 99.72%, and 99.60% which proves that combining texture-based radiomics deep features obtained from the three ResNets has boosted its performance. Thus, fusing multiple texture-based radiomics deep features mined from several convolutional neural networks is better than using only one type of radiomics approach and a single convolutional neural network. The performance of the proposed computer-assisted diagnostic framework allows it to be used by radiologists in attaining fast and accurate diagnosis.

14.
Life (Basel) ; 12(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35207519

ABSTRACT

Pediatric medulloblastomas (MBs) are the most common type of malignant brain tumors in children. They are among the most aggressive types of tumors due to their potential for metastasis. Although this disease was initially considered a single disease, pediatric MBs can be considerably heterogeneous. Current MB classification schemes are heavily reliant on histopathology. However, the classification of MB from histopathological images is a manual process that is expensive, time-consuming, and prone to error. Previous studies have classified MB subtypes using a single feature extraction method that was based on either deep learning or textural analysis. Here, we combine textural analysis with deep learning techniques to improve subtype identification using histopathological images from two medical centers. Three state-of-the-art deep learning models were trained with textural images created from two texture analysis methods in addition to the original histopathological images, enabling the proposed pipeline to benefit from both the spatial and textural information of the images. Using a relatively small number of features, we show that our automated pipeline can yield an increase in the accuracy of classification of pediatric MB compared with previously reported methods. A refined classification of pediatric MB subgroups may provide a powerful tool for individualized therapies and identification of children with increased risk of complications.

15.
Comput Biol Med ; 142: 105210, 2022 03.
Article in English | MEDLINE | ID: mdl-35026574

ABSTRACT

The accurate and speedy detection of COVID-19 is essential to avert the fast propagation of the virus, alleviate lockdown constraints and diminish the burden on health organizations. Currently, the methods used to diagnose COVID-19 have several limitations, thus new techniques need to be investigated to improve the diagnosis and overcome these limitations. Taking into consideration the great benefits of electrocardiogram (ECG) applications, this paper proposes a new pipeline called ECG-BiCoNet to investigate the potential of using ECG data for diagnosing COVID-19. ECG-BiCoNet employs five deep learning models of distinct structural design. ECG-BiCoNet extracts two levels of features from two different layers of each deep learning technique. Features mined from higher layers are fused using discrete wavelet transform and then integrated with lower-layers features. Afterward, a feature selection approach is utilized. Finally, an ensemble classification system is built to merge predictions of three machine learning classifiers. ECG-BiCoNet accomplishes two classification categories, binary and multiclass. The results of ECG-BiCoNet present a promising COVID-19 performance with an accuracy of 98.8% and 91.73% for binary and multiclass classification categories. These results verify that ECG data may be used to diagnose COVID-19 which can help clinicians in the automatic diagnosis and overcome limitations of manual diagnosis.


Subject(s)
COVID-19 , Neural Networks, Computer , COVID-19 Testing , Communicable Disease Control , Electrocardiography , Humans , SARS-CoV-2
16.
Diagnostics (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34829380

ABSTRACT

Retinopathy of Prematurity (ROP) affects preterm neonates and could cause blindness. Deep Learning (DL) can assist ophthalmologists in the diagnosis of ROP. This paper proposes an automated and reliable diagnostic tool based on DL techniques called DIAROP to support the ophthalmologic diagnosis of ROP. It extracts significant features by first obtaining spatial features from the four Convolution Neural Networks (CNNs) DL techniques using transfer learning and then applying Fast Walsh Hadamard Transform (FWHT) to integrate these features. Moreover, DIAROP explores the best-integrated features extracted from the CNNs that influence its diagnostic capability. The results of DIAROP indicate that DIAROP achieved an accuracy of 93.2% and an area under receiving operating characteristic curve (AUC) of 0.98. Furthermore, DIAROP performance is compared with recent ROP diagnostic tools. Its promising performance shows that DIAROP may assist the ophthalmologic diagnosis of ROP.

17.
Contrast Media Mol Imaging ; 2021: 7192016, 2021.
Article in English | MEDLINE | ID: mdl-34621146

ABSTRACT

The rates of skin cancer (SC) are rising every year and becoming a critical health issue worldwide. SC's early and accurate diagnosis is the key procedure to reduce these rates and improve survivability. However, the manual diagnosis is exhausting, complicated, expensive, prone to diagnostic error, and highly dependent on the dermatologist's experience and abilities. Thus, there is a vital need to create automated dermatologist tools that are capable of accurately classifying SC subclasses. Recently, artificial intelligence (AI) techniques including machine learning (ML) and deep learning (DL) have verified the success of computer-assisted dermatologist tools in the automatic diagnosis and detection of SC diseases. Previous AI-based dermatologist tools are based on features which are either high-level features based on DL methods or low-level features based on handcrafted operations. Most of them were constructed for binary classification of SC. This study proposes an intelligent dermatologist tool to accurately diagnose multiple skin lesions automatically. This tool incorporates manifold radiomics features categories involving high-level features such as ResNet-50, DenseNet-201, and DarkNet-53 and low-level features including discrete wavelet transform (DWT) and local binary pattern (LBP). The results of the proposed intelligent tool prove that merging manifold features of different categories has a high influence on the classification accuracy. Moreover, these results are superior to those obtained by other related AI-based dermatologist tools. Therefore, the proposed intelligent tool can be used by dermatologists to help them in the accurate diagnosis of the SC subcategory. It can also overcome manual diagnosis limitations, reduce the rates of infection, and enhance survival rates.


Subject(s)
Image Interpretation, Computer-Assisted , Skin Neoplasms/diagnosis , Skin/diagnostic imaging , Algorithms , Artificial Intelligence , Deep Learning , Humans , Machine Learning , Neural Networks, Computer , Skin/pathology , Skin Neoplasms/classification , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology
18.
Front Neuroinform ; 15: 663592, 2021.
Article in English | MEDLINE | ID: mdl-34122031

ABSTRACT

Childhood medulloblastoma (MB) is a threatening malignant tumor affecting children all over the globe. It is believed to be the foremost common pediatric brain tumor causing death. Early and accurate classification of childhood MB and its classes are of great importance to help doctors choose the suitable treatment and observation plan, avoid tumor progression, and lower death rates. The current gold standard for diagnosing MB is the histopathology of biopsy samples. However, manual analysis of such images is complicated, costly, time-consuming, and highly dependent on the expertise and skills of pathologists, which might cause inaccurate results. This study aims to introduce a reliable computer-assisted pipeline called CoMB-Deep to automatically classify MB and its classes with high accuracy from histopathological images. This key challenge of the study is the lack of childhood MB datasets, especially its four categories (defined by the WHO) and the inadequate related studies. All relevant works were based on either deep learning (DL) or textural analysis feature extractions. Also, such studies employed distinct features to accomplish the classification procedure. Besides, most of them only extracted spatial features. Nevertheless, CoMB-Deep blends the advantages of textural analysis feature extraction techniques and DL approaches. The CoMB-Deep consists of a composite of DL techniques. Initially, it extracts deep spatial features from 10 convolutional neural networks (CNNs). It then performs a feature fusion step using discrete wavelet transform (DWT), a texture analysis method capable of reducing the dimension of fused features. Next, the CoMB-Deep explores the best combination of fused features, enhancing the performance of the classification process using two search strategies. Afterward, it employs two feature selection techniques on the fused feature sets selected in the previous step. A bi-directional long-short term memory (Bi-LSTM) network; a DL-based approach that is utilized for the classification phase. CoMB-Deep maintains two classification categories: binary category for distinguishing between the abnormal and normal cases and multi-class category to identify the subclasses of MB. The results of the CoMB-Deep for both classification categories prove that it is reliable. The results also indicate that the feature sets selected using both search strategies have enhanced the performance of Bi-LSTM compared to individual spatial deep features. CoMB-Deep is compared to related studies to verify its competitiveness, and this comparison confirmed its robustness and outperformance. Hence, CoMB-Deep can help pathologists perform accurate diagnoses, reduce misdiagnosis risks that could occur with manual diagnosis, accelerate the classification procedure, and decrease diagnosis costs.

19.
PeerJ Comput Sci ; 7: e493, 2021.
Article in English | MEDLINE | ID: mdl-33987459

ABSTRACT

Breast cancer (BC) is one of the most common types of cancer that affects females worldwide. It may lead to irreversible complications and even death due to late diagnosis and treatment. The pathological analysis is considered the gold standard for BC detection, but it is a challenging task. Automatic diagnosis of BC could reduce death rates, by creating a computer aided diagnosis (CADx) system capable of accurately identifying BC at an early stage and decreasing the time consumed by pathologists during examinations. This paper proposes a novel CADx system named Histo-CADx for the automatic diagnosis of BC. Most related studies were based on individual deep learning methods. Also, studies did not examine the influence of fusing features from multiple CNNs and handcrafted features. In addition, related studies did not investigate the best combination of fused features that influence the performance of the CADx. Therefore, Histo-CADx is based on two stages of fusion. The first fusion stage involves the investigation of the impact of fusing several deep learning (DL) techniques with handcrafted feature extraction methods using the auto-encoder DL method. This stage also examines and searches for a suitable set of fused features that could improve the performance of Histo-CADx. The second fusion stage constructs a multiple classifier system (MCS) for fusing outputs from three classifiers, to further improve the accuracy of the proposed Histo-CADx. The performance of Histo-CADx is evaluated using two public datasets; specifically, the BreakHis and the ICIAR 2018 datasets. The results from the analysis of both datasets verified that the two fusion stages of Histo-CADx successfully improved the accuracy of the CADx compared to CADx constructed with individual features. Furthermore, using the auto-encoder for the fusion process has reduced the computation cost of the system. Moreover, the results after the two fusion stages confirmed that Histo-CADx is reliable and has the capacity of classifying BC more accurately compared to other latest studies. Consequently, it can be used by pathologists to help them in the accurate diagnosis of BC. In addition, it can decrease the time and effort needed by medical experts during the examination.

20.
PeerJ Comput Sci ; 7: e423, 2021.
Article in English | MEDLINE | ID: mdl-33817058

ABSTRACT

Gastrointestinal (GI) diseases are common illnesses that affect the GI tract. Diagnosing these GI diseases is quite expensive, complicated, and challenging. A computer-aided diagnosis (CADx) system based on deep learning (DL) techniques could considerably lower the examination cost processes and increase the speed and quality of diagnosis. Therefore, this article proposes a CADx system called Gastro-CADx to classify several GI diseases using DL techniques. Gastro-CADx involves three progressive stages. Initially, four different CNNs are used as feature extractors to extract spatial features. Most of the related work based on DL approaches extracted spatial features only. However, in the following phase of Gastro-CADx, features extracted in the first stage are applied to the discrete wavelet transform (DWT) and the discrete cosine transform (DCT). DCT and DWT are used to extract temporal-frequency and spatial-frequency features. Additionally, a feature reduction procedure is performed in this stage. Finally, in the third stage of the Gastro-CADx, several combinations of features are fused in a concatenated manner to inspect the effect of feature combination on the output results of the CADx and select the best-fused feature set. Two datasets referred to as Dataset I and II are utilized to evaluate the performance of Gastro-CADx. Results indicated that Gastro-CADx has achieved an accuracy of 97.3% and 99.7% for Dataset I and II respectively. The results were compared with recent related works. The comparison showed that the proposed approach is capable of classifying GI diseases with higher accuracy compared to other work. Thus, it can be used to reduce medical complications, death-rates, in addition to the cost of treatment. It can also help gastroenterologists in producing more accurate diagnosis while lowering inspection time.

SELECTION OF CITATIONS
SEARCH DETAIL
...