Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 650(Pt 1): 1521-1528, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308837

ABSTRACT

Persistent organic pollutants (POPs) were assessed for the first time in blue whales from the South Pacific Ocean. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane and its main metabolites (DDTs), were determined in 40 blubber samples from 36 free-ranging individuals and one stranded, dead animal along the coast of southern Chile between 2011 and 2013. PCBs were the most abundant pollutants (2.97-975 ng/g l.w.), followed by DDTs (3.50-537 ng/g l.w.), HCB (nd-77.5 ng/g l.w.) and PBDEs (nd-33.4 ng/g l.w). There was evidence of differences between sexes, with lower loads in females potentially due to pollutants passing to calves. POP concentrations were higher in specimens sampled in 2013; yet, between-year differences were only statistically significant for HCB and PBDEs. Lower chlorinated (penta > tetra > tri) and brominated (tetra > tri) congeners were the most prevalent among PCBs and PBDEs, respectively, mostly in agreement with findings previously reported in blue and other baleen whales. The present study provides evidence of lower levels of contamination by POPs in eastern South Pacific blue whales in comparison to those reported for the Northern Hemisphere.


Subject(s)
Adipose Tissue/metabolism , Balaenoptera/metabolism , Environmental Monitoring , Water Pollutants, Chemical/metabolism , Animals , Chile , DDT/metabolism , Female , Halogenated Diphenyl Ethers/metabolism , Hexachlorobenzene/metabolism , Hydrocarbons, Chlorinated/metabolism , Male , Pacific Ocean , Polychlorinated Biphenyls/metabolism
2.
Conserv Biol ; 30(5): 1060-9, 2016 10.
Article in English | MEDLINE | ID: mdl-26892747

ABSTRACT

Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next-generation sequencing technology.


Subject(s)
Breeding , Conservation of Natural Resources , Australia , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...