Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
BMC Pulm Med ; 24(1): 186, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632546

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder with systemic consequences that can cause a muscle loss phenotype (MLP), which is characterized by the loss of muscle mass, muscle strength, or loss of both muscle and fat mass. There are limited data comparing the individual traits of MLP with clinical outcomes in a large unbiased cohort of COPD patients. Our aim was to determine the proportion of patients who met criteria for MLP in an unbiased sample of COPD patients at the population-level. We also determined if specific MLP features were associated with all-cause and COPD-related mortality. METHODS: A retrospective population-based cohort analysis of the UK Biobank was performed. COPD was defined by a FEV1/FVC ratio < 0.7, physician established diagnosis of COPD, or those with a COPD-related hospitalization before baseline assessment. MLP included one or more of the following: 1) Low fat-free mass index (FFMI) on bioelectric impedance analysis (BIA) or 2) Appendicular skeletal muscle index (ASMI) on BIA, 3) Low muscle strength defined by handgrip strength (HGS), or 4) Low muscle and fat mass based on body mass index (BMI). Cox regression was used to determine the association between MLP and all-cause or COPD-related mortality. All models were adjusted for sex, age at assessment, ethnicity, BMI, alcohol use, smoking status, prior cancer diagnosis and FEV1/FVC ratio. RESULTS: There were 55,782 subjects (56% male) with COPD followed for a median of 70.1 months with a mean(± SD) age at assessment of 59 ± 7.5 years, and FEV1% of 79.2 ± 18.5. Most subjects had mild (50.4%) or moderate (42.8%) COPD. Many patients had evidence of a MLP, which was present in 53.4% of COPD patients (34% by ASMI, 26% by HGS). Of the 5,608 deaths in patients diagnosed with COPD, 907 were COPD-related. After multivariate adjustment, COPD subjects with MLP had a 30% higher hazard-ratio for all-cause death and 70% higher hazard-ratio for COPD-related death. CONCLUSIONS: Evidence of MLP is common in a large population-based cohort of COPD and is associated with higher risk for all-cause and COPD-related mortality.


Subject(s)
Hand Strength , Pulmonary Disease, Chronic Obstructive , Humans , Male , Female , Retrospective Studies , UK Biobank , Biological Specimen Banks , Muscle, Skeletal , Phenotype
2.
Am J Med Sci ; 367(4): 243-250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185404

ABSTRACT

BACKGROUND: Acute blood loss anemia is the most common form of anemia and often results from traumatic injuries or gastrointestinal bleeding. There are limited studies analyzing outcomes associated with acute blood loss anemia in hospitalized patients. METHODS: The Nationwide Inpatient Sample (NIS) was analyzed from 2010 to 2014 (n = 133,809). The impact of acute blood loss anemia on in-hospital mortality, length of stay (LOS), healthcare cost, and disposition was determined using regression modeling adjusted for age, gender, race, and comorbidities. RESULTS: Hospitalized patients with acute blood loss anemia had significantly higher healthcare cost (adj OR 1.04; 95% CI: 1.04-1.05), greater lengths of stay (adj OR 1.18; 95% CI: 1.17-1.18), and were less likely to be discharged home compared to the general medical population (adj OR 0.27; 95% CI: 0.26-0.28). Acute blood loss anemia was associated with increased risk for mortality in unadjusted models (unadj 1.16; 95% CI: 1.12-1.20) but not in adjusted models (adj OR 0.91; 95% CI: 0.88-0.94). When analyzing comorbidities, a "muscle loss phenotype" had the strongest association with mortality in patients with acute blood loss anemia (adj OR 4.48; 95% CI: 4.35-4.61). The top five primary diagnostic codes associated with acute blood loss anemia were long bone fractures, GI bleeds, cardiac repair, sepsis, and OB/Gyn related causes. Sepsis had the highest association with mortality (18%, adj OR 2.59; 95% CI: 2.34-2.86) in those with acute blood loss anemia. CONCLUSIONS: Acute blood loss anemia is associated with adverse outcomes in hospitalized patients.


Subject(s)
Anemia , Sepsis , Humans , Inpatients , Length of Stay , Patient Discharge , Anemia/complications , Anemia/epidemiology , Sepsis/complications , Sepsis/epidemiology , Retrospective Studies
3.
Glycobiology ; 33(11): 873-878, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-37812446

ABSTRACT

Sarcopenia, defined as the loss of muscle mass and strength, is a major cause of morbidity and mortality in COPD (chronic obstructive pulmonary disease) patients. However, the molecular mechanisms that cause sarcopenia remain to be determined. In this review, we will highlight the unique molecular and metabolic perturbations that occur in the skeletal muscle of COPD patients in response to hypoxia, and emphasize important areas of future research. In particular, the mechanisms related to the glycolytic shift that occurs in skeletal muscle in response to hypoxia may occur via a hypoxia-inducible factor 1-alpha (HIF-1α)-mediated mechanism. Upregulated glycolysis in skeletal muscle promotes a unique post-translational glycosylation of proteins known as O-GlcNAcylation, which further shifts metabolism toward glycolysis. Molecular changes in the skeletal muscle of COPD patients are associated with fiber-type shifting from Type I (oxidative) muscle fibers to Type II (glycolytic) muscle fibers. The metabolic shift toward glycolysis caused by HIF-1α and O-GlcNAc modified proteins suggests a potential cause for sarcopenia in COPD, which is an emerging area of future research.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Sarcopenia/metabolism , Muscle, Skeletal/metabolism , Hypoxia/metabolism , Protein Processing, Post-Translational , Pulmonary Disease, Chronic Obstructive/metabolism
4.
Aging Cell ; 22(7): e13852, 2023 07.
Article in English | MEDLINE | ID: mdl-37101412

ABSTRACT

Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.


Subject(s)
Hyperammonemia , Sirtuin 3 , Sirtuins , Humans , Mice , Animals , Sirtuins/metabolism , Sirtuin 3/metabolism , Hyperammonemia/metabolism , Ammonia/metabolism , NAD/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Acetylation
5.
J Cachexia Sarcopenia Muscle ; 14(2): 1083-1095, 2023 04.
Article in English | MEDLINE | ID: mdl-36856146

ABSTRACT

BACKGROUND: Sarcopenia, or loss of skeletal muscle mass and decreased contractile strength, contributes to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). The severity of sarcopenia in COPD is variable, and there are limited data to explain phenotype heterogeneity. Others have shown that COPD patients with sarcopenia have several hallmarks of cellular senescence, a potential mechanism of primary (age-related) sarcopenia. We tested if genetic contributors explain the variability in sarcopenic phenotype and accelerated senescence in COPD. METHODS: To identify gene variants [single nucleotide polymorphisms (SNPs)] associated with sarcopenia in COPD, we performed a genome-wide association study (GWAS) of fat free mass index (FFMI) in 32 426 non-Hispanic White (NHW) UK Biobank participants with COPD. Several SNPs within the fat mass and obesity-associated (FTO) gene were associated with sarcopenia that were validated in an independent COPDGene cohort (n = 3656). Leucocyte telomere length quantified in the UK Biobank cohort was used as a marker of senescence. Experimental validation was done by genetic depletion of FTO in murine skeletal myotubes exposed to prolonged intermittent hypoxia or chronic hypoxia because hypoxia contributes to sarcopenia in COPD. Molecular biomarkers for senescence were also quantified with FTO depletion in murine myotubes. RESULTS: Multiple SNPs located in the FTO gene were associated with sarcopenia in addition to novel SNPs both within and in proximity to the gene AC090771.2, which transcribes long non-coding RNA (lncRNA). To replicate our findings, we performed a GWAS of FFMI in NHW subjects from COPDGene. The SNP most significantly associated with FFMI was on chromosome (chr) 16, rs1558902A > T in the FTO gene (ß = 0.151, SE = 0.021, P = 1.40 × 10-12 for UK Biobank |ß= 0.220, SE = 0.041, P = 9.99 × 10-8 for COPDGene) and chr 18 SNP rs11664369C > T nearest to the AC090771.2 gene (ß = 0.129, SE = 0.024, P = 4.64 × 10-8 for UK Biobank |ß = 0.203, SE = 0.045, P = 6.38 × 10-6 for COPDGene). Lower handgrip strength, a measure of muscle strength, but not FFMI was associated with reduced telomere length in the UK Biobank. Experimentally, in vitro knockdown of FTO lowered myotube diameter and induced a senescence-associated molecular phenotype, which was worsened by prolonged intermittent hypoxia and chronic hypoxia. CONCLUSIONS: Genetic polymorphisms of FTO and AC090771.2 were associated with sarcopenia in COPD in independent cohorts. Knockdown of FTO in murine myotubes caused a molecular phenotype consistent with senescence that was exacerbated by hypoxia, a common condition in COPD. Genetic variation may interact with hypoxia and contribute to variable severity of sarcopenia and skeletal muscle molecular senescence phenotype in COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Animals , Mice , Sarcopenia/genetics , Sarcopenia/complications , Hand Strength , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/complications , Polymorphism, Single Nucleotide , Hypoxia
6.
J Physiol ; 601(3): 567-606, 2023 02.
Article in English | MEDLINE | ID: mdl-36533558

ABSTRACT

Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Mice , Animals , Sarcopenia/metabolism , Proteostasis , Muscle, Skeletal/metabolism , Hypoxia/metabolism , Pulmonary Disease, Chronic Obstructive/complications
7.
iScience ; 25(11): 105325, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36345342

ABSTRACT

Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.

8.
J Allergy Clin Immunol Pract ; 10(3): 742-750.e14, 2022 03.
Article in English | MEDLINE | ID: mdl-35033701

ABSTRACT

BACKGROUND: In addition to their proinflammatory effect, eosinophils have antiviral properties. Similarly, inhaled corticosteroids (ICS) were found to suppress coronavirus replication in vitro and were associated with improved outcomes in coronavirus disease 2019 (COVID-19). However, the interplay between the two and its effect on COVID-19 needs further evaluation. OBJECTIVE: To determine the associations among preexisting blood absolute eosinophil counts, ICS, and COVID-19-related outcomes. METHODS: We analyzed data from the Cleveland Clinic COVID-19 Research Registry (April 1, 2020 to March 31, 2021). Of the 82,096 individuals who tested positive, 46,397 had blood differential cell counts obtained before severe acute respiratory syndrome coronavirus 2 testing dates. Our end points included the need for hospitalization, admission to the intensive care unit (ICU), and in-hospital mortality. The effect of eosinophilia on outcomes was estimated after propensity weighting and adjustment. RESULTS: Of the 46,397 patients included in the final analyses, 19,506 had preexisting eosinophilia (>0.15 × 103 cells/µL), 5,011 received ICS, 9,096 (19.6%) were hospitalized, 2,129 required ICU admission (4.6%) and 1,402 died during index hospitalization (3.0%). Adjusted analysis associated eosinophilia with lower odds for hospitalization (odds ratio [OR] [95% confidence interval (CI)]: 0.86 [0.79-0.93]), ICU admission (OR [95% CI]: 0.79 [0.69-0.90]), and mortality (OR [95% CI]: 0.80 [0.68-0.95]) among ICS-treated patients but not untreated ones. The correlation between absolute eosinophil count and the estimated probability of hospitalization, ICU admission, and death was nonlinear (U-shaped) among patients not treated with ICS, and negative in treated patients. CONCLUSIONS: The association between eosinophilia and improved COVID-19 outcomes depends on ICS. Future randomized controlled trials are needed to determine the role of ICS and its interaction with eosinophilia in COVID-19 therapy.


Subject(s)
COVID-19 , Eosinophilia , Pulmonary Disease, Chronic Obstructive , Adrenal Cortex Hormones , COVID-19 Testing , Eosinophilia/chemically induced , Eosinophilia/drug therapy , Eosinophilia/epidemiology , Humans , Pulmonary Disease, Chronic Obstructive/complications , SARS-CoV-2
11.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: mdl-34935641

ABSTRACT

Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype-increased ß-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.


Subject(s)
Cellular Reprogramming/physiology , Hyperammonemia/therapy , Mitochondria/metabolism , Mitosis/physiology , Proteomics/methods , Animals , Rats
12.
J Allergy Clin Immunol Pract ; 9(11): 3934-3940.e9, 2021 11.
Article in English | MEDLINE | ID: mdl-34438103

ABSTRACT

BACKGROUND: Sites of entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly expressed in nasal epithelial cells; however, little is known about the impact of intranasal corticosteroids (INCS) on coronavirus disease 2019 (COVID-19)-related outcomes. OBJECTIVE: To determine the association between baseline INCS use and COVID-19-related outcomes. METHODS: Using the Cleveland Clinic COVID-19 Research Registry, we performed a propensity score matching for treatment with INCS before SARS-CoV-2 infection (April 1, 2020, to March 31, 2021). Of the 82,096 individuals who tested positive, 72,147 met inclusion criteria. Our endpoints included the need for hospitalization, admission to the intensive care unit (ICU), or in-hospital mortality. RESULTS: Of the 12,608 (17.5%) who were hospitalized, 2935 (4.1%) required ICU admission and 1880 (2.6%) died during hospitalization. A significant proportion (n = 10,187; 14.1%) were using INCS before SARS-CoV-2 infection. Compared with nonusers, INCS users demonstrated lower risk for hospitalization (adjusted odds ratio [OR] [95% confidence interval (CI)]: 0.78 [0.72; 0.85]), ICU admission (adjusted OR [95% CI]: 0.77 [0.65; 0.92]), and in-hospital mortality (adjusted OR [95% CI]: 0.76 [0.61; 0.94]). These findings were replicated in sensitivity analyses where patients on inhaled corticosteroids and those with allergic rhinitis were excluded. The beneficial effect of INCS was significant after adjustment for baseline blood eosinophil count (measured before SARS-CoV-2 testing) in a subset of 30,289 individuals. CONCLUSION: INCS therapy is associated with a lower risk for COVID-19-related hospitalization, ICU admission, or death. Future randomized control trials are needed to determine if INCS reduces the risk for severe outcomes related to COVID-19.


Subject(s)
COVID-19 , Adrenal Cortex Hormones/therapeutic use , COVID-19 Testing , Humans , Intensive Care Units , SARS-CoV-2
13.
J Biol Chem ; 297(3): 101023, 2021 09.
Article in English | MEDLINE | ID: mdl-34343564

ABSTRACT

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Subject(s)
Genomics , Hyperammonemia/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Proteomics , Transcriptome , Animals , Flow Cytometry , Humans , Hyperammonemia/genetics , Immunoblotting/methods , Mice , Real-Time Polymerase Chain Reaction , Reproducibility of Results
14.
PLoS One ; 16(6): e0252576, 2021.
Article in English | MEDLINE | ID: mdl-34081722

ABSTRACT

Inhaled Corticosteroids (ICS) are commonly prescribed to patients with severe COPD and recurrent exacerbations. It is not known what impact ICS cause in terms of COVID-19 positivity or disease severity in COPD. This study examined 27,810 patients with COPD from the Cleveland Clinic COVID-19 registry between March 8th and September 16th, 2020. Electronic health records were used to determine diagnosis of COPD, ICS use, and clinical outcomes. Multivariate logistic regression was used to adjust for demographics, month of COVID-19 testing, and comorbidities known to be associated with increased risk for severe COVID-19 disease. Amongst the COPD patients who were tested for COVID-19, 44.1% of those taking an ICS-containing inhaler tested positive for COVID-19 versus 47.2% who tested negative for COVID-19 (p = 0.033). Of those who tested positive for COVID-19 (n = 1288), 371 (28.8%) required hospitalization. In-hospital outcomes were not significantly different when comparing ICS versus no ICS in terms of ICU admission (36.8% [74/201] vs 31.2% [53/170], p = 0.30), endotracheal intubation (21.9% [44/201] vs 16.5% [28/170], p = 0.24), or mortality (18.4% [37/201] vs 20.0% [34/170], p = 0.80). Multivariate logistic regression demonstrated no significant differences in hospitalization (adj OR 1.12, CI: 0.90-1.38), ICU admission (adj OR: 1.31, CI: 0.82-2.10), need for mechanical ventilation (adj OR 1.65, CI: 0.69-4.02), or mortality (OR: 0.80, CI: 0.43-1.49). In conclusion, ICS therapy did not increase COVID-19 related healthcare utilization or mortality outcome in patients with COPD followed at the Cleveland Clinic health system. These findings should encourage clinicians to continue ICS therapy for COPD patients during the COVID-19 pandemic.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/pharmacology , Adrenergic beta-2 Receptor Agonists/adverse effects , Adult , Aged , COVID-19/complications , COVID-19 Testing , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Muscarinic Antagonists/therapeutic use , Nebulizers and Vaporizers , Pandemics , Pulmonary Disease, Chronic Obstructive/complications , Registries , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
15.
J Clin Med ; 10(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919322

ABSTRACT

Differences in oxygen delivery methods to treat hypoxemia have the potential to worsen CO2 retention in chronic obstructive lung disease (COPD). Oxygen administration using high flow nasal cannula (HFNC) has multiple physiological benefits in treating respiratory failure including reductions in PaCO2 in a flow-dependent manner. We hypothesized that patients with COPD would develop worsening hypercapnia if oxygen fraction was increased without increasing flow rate. We evaluated the acute response to HFNC in subjects with severe COPD when flow remained constant and inspired oxygen was increased. In total, 11 subjects with severe COPD (FEV1 < 50%) on supplemental oxygen with baseline normocapnia (PaCO2 < 45 mm Hg; n = 5) and hypercapnia (PaCO2 ≥ 45 mm Hg; n = 6) were studied. Arterial blood gas responses were studied at three timepoints: Baseline, HFNC at a flow rate of 30 L/min at resting oxygen supplementation for 1 h, and FiO2 30% above baseline with the same flow rate for the next hour. The primary endpoint was the change in PaCO2 from baseline. No significant changes in PaCO2 were noted in response to HFNC applied at baseline FiO2 in the normocapnic and hypercapnic group. At HFNC with FiO2 30% above baseline, the normocapnic group did not show a change in PaCO2 (baseline: 38.9 ± 1.8 mm Hg; HFNC at higher FiO2: 38.8 ± 3.1 mm Hg; p = 0.93), but the hypercapnic group demonstrated significant increase in PaCO2 (baseline: 58.2 ± 9.3 mm Hg; HFNC at higher FiO2: 63.3 ± 10.9 mm Hg; p = 0.025). We observed worsening hypercapnia in severe COPD patients and baseline hypercapnia who received increased oxygen fraction when flow remained constant. These data show the need for careful titration of oxygen therapy in COPD patients, particularly those with baseline hypercapnia when flow rate is unchanged.

16.
COPD ; 18(2): 191-200, 2021 04.
Article in English | MEDLINE | ID: mdl-33736550

ABSTRACT

Patients with advanced chronic obstructive pulmonary disease (COPD) develop skeletal muscle loss (sarcopenia) that is associated with adverse clinical outcomes including mortality. We evaluated if thoracic muscle area is associated with clinical outcomes in patients with severe COPD. We analyzed consecutive patients with severe COPD undergoing evaluation for lung volume reduction from 2015 to 2019 (n = 117) compared to current and former smoking controls undergoing lung cancer screening with normal lung function (n = 41). Quantitative assessments of pectoralis muscle (PM) and erector spinae muscle (ESM) cross sectional area (CSA) were related to clinical outcomes including composite endpoints. Our results showed a reduction in PM CSA but not ESM CSA was associated with the severity of GOLD stage of COPD. Current smokers demonstrated reduced PM CSA which was similar to that in COPD patients who were GOLD stages 3 and 4. PM CSA was associated positively with FEV1, FEV1% predicted, FVC, DLCO, and FEV1/FVC ratio, and was associated negatively with the degree of radiologic emphysema. ESM correlated positively with DLCO, RV/TLC (a marker of hyperinflation), and correlated negatively with radiologic severity of emphysema. Kaplan-Meier analysis showed that reductions in PM but not ESM CSA was associated with the composite end point of mortality, need for lung volume reduction, or lung transplant. In conclusion, in well-characterized patients with severe COPD referred for lung volume reduction, PM CSA correlated with severity of lung disease, mortality, and need for advanced therapies. In addition to predicting clinical outcomes, targeting sarcopenia is a potential therapeutic approach in patients with severe COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Early Detection of Cancer , Emphysema , Forced Expiratory Volume , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Pectoralis Muscles/diagnostic imaging , Pneumonectomy , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Emphysema , Sarcopenia/diagnostic imaging , Severity of Illness Index , Tomography, X-Ray Computed
17.
BMJ ; 372: n436, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692022

ABSTRACT

Severe covid-19 pneumonia has posed critical challenges for the research and medical communities. Older age, male sex, and comorbidities increase the risk for severe disease. For people hospitalized with covid-19, 15-30% will go on to develop covid-19 associated acute respiratory distress syndrome (CARDS). Autopsy studies of patients who died of severe SARS CoV-2 infection reveal presence of diffuse alveolar damage consistent with ARDS but with a higher thrombus burden in pulmonary capillaries. When used appropriately, high flow nasal cannula (HFNC) may allow CARDS patients to avoid intubation, and does not increase risk for disease transmission. During invasive mechanical ventilation, low tidal volume ventilation and positive end expiratory pressure (PEEP) titration to optimize oxygenation are recommended. Dexamethasone treatment improves mortality for the treatment of severe and critical covid-19, while remdesivir may have modest benefit in time to recovery in patients with severe disease but shows no statistically significant benefit in mortality or other clinical outcomes. Covid-19 survivors, especially patients with ARDS, are at high risk for long term physical and mental impairments, and an interdisciplinary approach is essential for critical illness recovery.


Subject(s)
COVID-19/complications , COVID-19/therapy , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , COVID-19/diagnosis , Humans , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis
18.
Chest ; 159(5): 1747-1757, 2021 05.
Article in English | MEDLINE | ID: mdl-33440184

ABSTRACT

BACKGROUND: Asthma exacerbations result in significant health and economic burden, but are difficult to predict. RESEARCH QUESTION: Can machine learning (ML) models with large-scale outpatient data predict asthma exacerbations? STUDY DESIGN AND METHODS: We analyzed data extracted from electronic health records (EHRs) of asthma patients treated at the Cleveland Clinic from 2010 through 2018. Demographic information, comorbidities, laboratory values, and asthma medications were included as covariates. Three different models were built with logistic regression, random forests, and a gradient boosting decision tree to predict: (1) nonsevere asthma exacerbation requiring oral glucocorticoid burst, (2) ED visits, and (3) hospitalizations. RESULTS: Of 60,302 patients, 19,772 (32.8%) had at least one nonsevere exacerbation requiring oral glucocorticoid burst, 1,748 (2.9%) requiring and ED visit and 902 (1.5%) requiring hospitalization. Nonsevere exacerbation, ED visit, and hospitalization were predicted best by light gradient boosting machine, an algorithm used in ML to fit predictive analytic models, and had an area under the receiver operating characteristic curve of 0.71 (95% CI, 0.70-0.72), 0.88 (95% CI, 0.86-0.89), and 0.85 (95% CI, 0.82-0.88), respectively. Risk factors for all three outcomes included age, long-acting ß agonist, high-dose inhaled glucocorticoid, or chronic oral glucocorticoid therapy. In subgroup analysis of 9,448 patients with spirometry data, low FEV1 and FEV1 to FVC ratio were identified as top risk factors for asthma exacerbation, ED visits, and hospitalization. However, adding pulmonary function tests did not improve models' prediction performance. INTERPRETATION: Models built with an ML algorithm from real-world outpatient EHR data accurately predicted asthma exacerbation and can be incorporated into clinical decision tools to enhance outpatient care and to prevent adverse outcomes.


Subject(s)
Asthma/physiopathology , Machine Learning , Symptom Flare Up , Adolescent , Adult , Aged , Aged, 80 and over , Electronic Health Records , Female , Humans , Male , Middle Aged , Ohio , Predictive Value of Tests
19.
Respirology ; 26(1): 62-71, 2021 01.
Article in English | MEDLINE | ID: mdl-32542761

ABSTRACT

BACKGROUND AND OBJECTIVE: COPD is the third most common cause of death worldwide and fourth most common in the United States. In hospitalized patients with COPD, mortality, morbidity and healthcare resource utilization are high. Skeletal muscle loss is frequent in patients with COPD. However, the impact of muscle loss on adverse outcomes has not been systematically evaluated. We tested the hypothesis that patients hospitalized for COPD exacerbation with, compared to those without, a secondary diagnosis of muscle loss phenotype (all ICD-9 codes associated with muscle loss including cachexia) will have higher mortality and cost of care. METHODS: The NIS database of hospitalized patients in 2011 (1 January-31 December) in the United States was used. The impact of a muscle loss phenotype on in-hospital mortality, LOS and cost of care for each of the 174 808 hospitalizations for COPD exacerbations was analysed. RESULTS: Of the subjects admitted for a COPD exacerbation, 12 977 (7.4%) had a secondary diagnosis of muscle loss phenotype. A diagnosis of muscle loss phenotype was associated with significantly higher in-hospital mortality (14.6% vs 5.7%, P < 0.001), LOS (13.3 + 17.1 vs 5.7 + 7.6, P < 0.001) and median hospital charge per patient ($13 947 vs $6610, P < 0.001). Multivariate regression analysis showed that muscle loss phenotype increased mortality by 111% (95% CI: 2.0-2.2, P < 0.001), LOS by 68.4% (P < 0.001) and the direct cost of care by 83.7% (P < 0.001) compared to those without muscle loss. CONCLUSION: In-hospital mortality, LOS and healthcare costs are higher in patients with COPD exacerbations and a muscle loss phenotype.


Subject(s)
Muscles/pathology , Pulmonary Disease, Chronic Obstructive/mortality , Aged , Disease Progression , Female , Health Care Costs , Hospitalization , Humans , Linear Models , Male , Middle Aged , Morbidity , Multivariate Analysis , Phenotype , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/economics , Risk Factors , United States/epidemiology
20.
J Allergy Clin Immunol Pract ; 9(4): 1562-1569.e1, 2021 04.
Article in English | MEDLINE | ID: mdl-33181340

ABSTRACT

BACKGROUND: Asthma is a prevalent disease with a high economic cost. More than 50% of its direct cost relates to asthma hospitalizations. Diabetes mellitus (DM) is a significant comorbidity in asthmatic patients, yet its impact on asthma-related hospitalizations is unknown. OBJECTIVE: To compare the outcome of asthma-related hospitalizations in patients with and without DM. METHODS: Using Healthcare Cost and Utilization Project Nationwide Readmissions Database, we analyzed data of all adults with index admission for asthma and with no other chronic pulmonary conditions, and compared outcomes between patients with and without DM. Weighted regression analysis was used to determine the impact of DM on hospitalization outcomes. All multivariate regression models were adjusted for patient demographics, socioeconomic status, and chronic medical comorbidities. RESULTS: A total of 717,200 asthmatic patients were included, with 202,489 (28.3%) having DM. Diabetic patients were older and had more comorbidities. When hospitalized for asthma, diabetic patients had increased hospital length of stay, cost, and risk for 30-day all-cause and asthma-related readmission. They also had a higher risk for developing nonrespiratory complications during their hospital stay compared with nondiabetic patients. The risk of mortality was similar between the 2 groups. CONCLUSIONS: Patients hospitalized for asthma with coexisting DM had increased hospital length of stay, cost, and risk for readmission. Interventions are urgently needed to reduce the risk for hospital admission and readmission in patients with coexisting DM and asthma. These interventions would have profound economic and societal impact.


Subject(s)
Asthma , Diabetes Mellitus , Adult , Asthma/epidemiology , Comorbidity , Diabetes Mellitus/epidemiology , Health Care Costs , Hospitalization , Humans , Length of Stay , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...