Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Int J Biol Macromol ; 269(Pt 1): 132109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714281

ABSTRACT

This study presents a novel and efficient approach for pullulan production using artificial neural networks (ANNs) to optimize semi-solid-state fermentation (S-SSF) on faba bean biomass (FBB). This method achieved a record-breaking pullulan yield of 36.81 mg/g within 10.82 days, significantly exceeding previous results. Furthermore, the study goes beyond yield optimization by characterizing the purified pullulan, revealing its unique properties including thermal stability, amorphous structure, and antioxidant activity. Energy-dispersive X-ray spectroscopy and scanning electron microscopy confirmed its chemical composition and distinct morphology. This research introduces a groundbreaking combination of ANNs and comprehensive characterization, paving the way for sustainable and cost-effective pullulan production on FBB under S-SSF conditions. Additionally, the study demonstrates the successful integration of pullulan with Ag@TiO2 nanoparticles during synthesis using Fusarium oxysporum. This novel approach significantly enhances the stability and efficacy of the nanoparticles by modifying their surface properties, leading to remarkably improved antibacterial activity against various human pathogens. These findings showcase the low-cost production medium, and extensive potential of pullulan not only for its intrinsic properties but also for its ability to significantly improve the performance of nanomaterials. This breakthrough opens doors to diverse applications in various fields.


Subject(s)
Anti-Bacterial Agents , Aureobasidium , Fermentation , Glucans , Nanocomposites , Neural Networks, Computer , Silver , Titanium , Glucans/chemistry , Glucans/biosynthesis , Glucans/pharmacology , Nanocomposites/chemistry , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Aureobasidium/metabolism , Silver/chemistry , Silver/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Fusarium
2.
ACS Omega ; 9(15): 17563-17576, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645369

ABSTRACT

Transition-metal oxide has been identified as an auspicious material for supercapacitors due to its exceptional capacity. The inadequate electrochemical characteristics, such as prolonged cycle stability, can be ascribed to factors, such as low electrical conductivity, sluggish reaction kinetics, and a deficiency of active sites. The transition-metal oxides derived from the MOF materials offer a larger surface area with enriched active sites and a faster reaction rate along with good electrical conductivity. The manganese (Mn)-based metal-organic framework (MOF)-derived materials were produced using the pyrolysis method. Zeolitic imidazolate frameworks (ZIF-67) were fabricated in water at ambient temperature with the aid of triethylamine. Multiple techniques were used to examine the characteristics of the fabricated electrode materials. The influence of the electrolyte on the electrochemical activity of the Mn3O4@N-doped C electrode materials was determined in KOH, NaOH, and LiOH. For manufacturing of "Mn3O4@N-doped C", ZIF-67 was used as a precursor. The capacitive performance of the Mn3O4@N-doped C electrode increased as a result of nitrogen-doped carbon; after 5000th cycles, the electrode retained an excellent rate capability and a high specific capacitance (Cs) of 980 F g-1 at 1 A g-1 under 2.0 KOH electrolyte in a three electrode system. The carbonized manganese oxide displays also had a high Cs of 686 F g-1 in two electrode systems in 2.0 M KOH. Materials made from MOFs show promise as capacitive materials for applications in energy conversion storage owing to their straightforward synthesis and strong electrochemical performance.

3.
Heliyon ; 10(7): e28359, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560145

ABSTRACT

Due to increasing concerns about environmental impact and toxicity, developing green and sustainable methods for nanoparticle synthesis is attracting significant interest. This work reports the successful green synthesis of silver (Ag), silver-titanium dioxide (Ag@TiO2), and silver-selenium dioxide (Ag@SeO2) nanoparticles (NPs) using Beta vulgaris L. extract. Characterization by XRD, SEM, TEM, and EDX confirmed the successful formation of uniformly distributed spherical NPs with controlled size (25 ± 4.9 nm) and desired elemental composition. All synthesized NPs and the B. vulgaris extract exhibited potent free radical scavenging activity, indicating significant antioxidant potential. However, Ag@SeO2 displayed lower hemocompatibility compared to other NPs, while Ag@SeO2 and the extract demonstrated reduced inflammation in a carrageenan-induced paw edema animal model. Interestingly, Ag@TiO2 and Ag@SeO2 exhibited strong antifungal activity against Rhizoctonia solani and Sclerotia sclerotium, as evidenced by TEM and FTIR analyses. Generally, the findings suggest that B. vulgaris-derived NPs possess diverse biological activities with potential applications in various fields such as medicine and agriculture. Ag@TiO2 and Ag@SeO2, in particular, warrant further investigation for their potential as novel bioactive agents.

4.
Sci Rep ; 14(1): 3562, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347025

ABSTRACT

This article's main objective is to maximize solar radiations (SRs) through the use of the gorilla troop algorithm (GTA) for identifying the optimal tilt angle (OTA) for photovoltaic (PV) panels. This is done in conjunction with an experimental work that consists of three 100 W PV panels tilted at three different tilt angles (TAs). The 28°, 30°, and 50° are the three TAs. The experimental data are collected every day for 181-day and revealed that the TA of 28° is superior to those of 50° and 30°. The GTA calculated the OTA to be 28.445°, which agrees with the experimental results, which show a TA of 28°. The SR of the 28o TA is 59.3% greater than that of the 50° TA and 4.5% higher than that of the 30° TA. Recent methods are used to compare the GTA with the other nine metaheuristics (MHTs)-the genetic algorithm, particle swarm, harmony search, ant colony, cuckoo search, bee colony, fire fly, grey wolf, and coronavirus disease optimizers-in order to figure out the optimal OTA. The OTA is calculated by the majority of the nine MHTs to be 28.445°, which is the same as the GTA and confirms the experimental effort. In only 181-day, the by experimentation it may be documented SR difference between the TAs of 28° and 50° TA is 159.3%. Numerous performance metrics are used to demonstrate the GTA's viability, and it is contrasted with other recent optimizers that are in competition.

5.
Pediatr Res ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177248

ABSTRACT

BACKGROUND: Given the sparse data on the renin-angiotensin system (RAS) and its biological effector molecules ACE1 and ACE2 in pediatric COVID-19 cases, we investigated whether the ACE1 insertion/deletion (I/D) polymorphism could be a genetic marker for susceptibility to COVID-19 in Egyptian children and adolescents. METHODS: This was a case-control study included four hundred sixty patients diagnosed with COVID-19, and 460 well-matched healthy control children and adolescents. The I/D polymorphism (rs1799752) in the ACE1 gene was genotyped by polymerase chain reaction (PCR), meanwhile the ACE serum concentrations were assessed by ELISA. RESULTS: The ACE1 D/D genotype and Deletion allele were significantly more represented in patients with COVID-19 compared to the control group (55% vs. 28%; OR = 2.4; [95% CI: 1.46-3.95]; for the DD genotype; P = 0.002) and (68% vs. 52.5%; OR: 1.93; [95% CI: 1.49-2.5] for the D allele; P = 0.032). The presence of ACE1 D/D genotype was an independent risk factor for severe COVID-19 among studied patients (adjusted OR: 2.6; [95% CI: 1.6-9.7]; P < 0.001. CONCLUSIONS: The ACE1 insertion/deletion polymorphism may confer susceptibility to SARS-CoV-2 infection in Egyptian children and adolescents. IMPACT: Recent studies suggested a crucial role of renin-angiotensin system and its biological effector molecules ACE1 and ACE2 in the pathogenesis and progression of COVID-19. To our knowledge, ours is the first study to investigate the association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Caucasian children and adolescents. The presence of the ACE1 D/D genotype or ACE1 Deletion allele may confer susceptibility to SARS-CoV-2 infection and being associated with higher ACE serum levels; may constitute independent risk factors for severe COVID-19. The ACE1 I/D genotyping help design further clinical trials reconsidering RAS-pathway antagonists to achieve more efficient targeted therapies.

6.
Sci Rep ; 13(1): 21801, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38065998

ABSTRACT

This study aimed to assess the impact of spirulina and/or canthaxanthin-enriched Artemia on the goldfish (Carassius auratus) growth, pigmentation, blood analysis, immunity, intestine and liver histomorphology, and expression of somatolactin (SL) and growth hormone (GH) genes. Artemia was enriched with spirulina and/or canthaxanthin for 24 h. Goldfish (N = 225, 1.10 ± 0.02 g) were tested in five experimental treatments, three replicates each: (T1) fish fed a commercial diet; (T2) fish fed a commercial diet and un-enriched Artemia (UEA); (T3) fish fed a commercial diet and spirulina-enriched Artemia (SEA); (T4) fish fed a commercial diet and canthaxanthin-enriched Artemia (CEA); and (T5) fish fed a commercial diet and spirulina and canthaxanthin-enriched Artemia (SCA) for 90 days. The results showed that the use of spirulina and/or canthaxanthin increased performance, ß-carotene content and polyunsaturated fatty acids of Artemia. For goldfish, T5 showed the highest growth performance, ß-carotene concentration and the lowest chromatic deformity. T5 also showed improved hematology profile, serum biochemical, and immunological parameters. Histomorphology of the intestine revealed an increase in villi length and goblet cells number in the anterior and middle intestine, with normal liver structure in T5. SL and GH gene expression in the liver and brain differed significantly among treatments with a significant increase in enriched Artemia treatments compared to T1 and T2. In conclusion, the use of spirulina and/or canthaxanthin improved performance of Artemia. Feeding goldfish spirulina and/or canthaxanthin-enriched Artemia improved performance, ß-carotene content, pigmentation, health status and immune-physiological response.


Subject(s)
Artemia , Goldfish , Animals , Artemia/genetics , beta Carotene , Canthaxanthin , Diet , Pigmentation , Gene Expression Profiling
7.
Sci Rep ; 13(1): 22294, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102158

ABSTRACT

The performance and dependability of distribution networks may be enhanced by the incorporation of microgrids (MGs). However, it is necessary to enhance low voltage fault-ride-through (LVFRT), which has the capacity to prevent abrupt grid disconnections during LV occurrences under problematic circumstances. In this study, a control strategy for energy storage elements (ESDs) which includes batteries and supercapacitors is proposed to enhance LVFRT under balanced and unbalanced faults. The MG comprises wind farms and/or photovoltaic arrays. Based on the dynamic simulations using MATLAB/SIMULINK, the ESDs can enhance LVFRT capability. A comparison of the conventional crowbar scheme and ESDs is realized, and the latter has a better performance than the former in retaining the DC-link voltage within satisfactory bounds. For the purpose of maintaining the DC-link voltage at a reference level, the battery stores extra power in the DC-bus of three systems. LVFRT is improved by the crowbar circuit, however the resistance consumes the extra power. Super capacitors (SCs) prevent DC voltage fluctuations, reduce active power oscillations, and hasten system stabilization when present. At an advanced stage of this effort, the coot bird optimizer (CBO) is applied to generate the best gains of bi-directional converter PI-controller and the ESDs ratings to have minimum ripples in the DC-bus voltage and to boost the LVFRT capability of the MGs. The viability of the proposed method based on the CBO's results is indicated with further validations under different operating scenarios.

8.
Sci Rep ; 13(1): 19532, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945790

ABSTRACT

The current effort addresses a novel attempt to extract the seven ungiven parameters of PEMFCs stack. The sum of squared deviations (SSDs) among the measured and the relevant model-based calculated datasets is adopted to define the cost function. A Kepler Optimization Algorithm (KOA) is employed to decide the best values of these parameters within viable ranges. Initially, the KOA-based methodology is applied to assess the steady-state performance for four practical study cases under several operating conditions. The results of the KOA are appraised against four newly challenging algorithms and the other recently reported optimizers in the literature under fair comparisons, to prove its superiority. Particularly, the minimum values of the SSDs for Ballard Mark, BCS 0.5 kW, NedStack PS6, and Temasek 1 kW PEMFCs stacks are 0.810578 V2, 0.0116952 V2, 2.10847 V2, and 0.590467 V2, respectively. Furthermore, the performance measures are evaluated on various metrics. Lastly, a simplified trial to upgrade Amphlett's model to include the PEMFCs' electrical dynamic response is introduced. The KOA appears to be viable and may be extended in real-time conditions according to the presented scenarios (steady-state and transient conditions).

9.
J Am Heart Assoc ; 12(3): e026484, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36651320

ABSTRACT

Background We aim to evaluate the association between meal intervals and weight trajectory among adults from a clinical cohort. Methods and Results This is a multisite prospective cohort study of adults recruited from 3 health systems. Over the 6-month study period, 547 participants downloaded and used a mobile application to record the timing of meals and sleep for at least 1 day. We obtained information on weight and comorbidities at each outpatient visit from electronic health records for up to 10 years before until 10 months after baseline. We used mixed linear regression to model weight trajectories. Mean age was 51.1 (SD 15.0) years, and body mass index was 30.8 (SD 7.8) kg/m2; 77.9% were women, and 77.5% reported White race. Mean interval from first to last meal was 11.5 (2.3) hours and was not associated with weight change. The number of meals per day was positively associated with weight change. The average difference in annual weight change (95% CI) associated with an increase of 1 daily meal was 0.28 kg (0.02-0.53). Conclusions Number of daily meals was positively associated with weight change over 6 years. Our findings did not support the use of time-restricted eating as a strategy for long-term weight loss in a general medical population.


Subject(s)
Diet , Feeding Behavior , Adult , Humans , Female , Middle Aged , Male , Prospective Studies , Meals , Sleep , Body Mass Index
10.
Pediatr Res ; 93(5): 1383-1390, 2023 04.
Article in English | MEDLINE | ID: mdl-36085364

ABSTRACT

BACKGROUND: Given the sparse data on vitamin D status in pediatric COVID-19, we investigated whether vitamin D deficiency could be a risk factor for susceptibility to COVID-19 in Egyptian children and adolescents. We also investigated whether vitamin D receptor (VDR) FokI polymorphism could be a genetic marker for COVID-19 susceptibility. METHODS: One hundred and eighty patients diagnosed to have COVID-19 and 200 matched control children and adolescents were recruited. Patients were laboratory confirmed as SARS-CoV-2 positive by real-time RT-PCR. All participants were genotyped for VDR Fok1 polymorphism by RT-PCR. Vitamin D status was defined as sufficient for serum 25(OH) D at least 30 ng/mL, insufficient at 21-29 ng/mL, deficient at <20 ng/mL. RESULTS: Ninety-four patients (52%) had low vitamin D levels with 74 (41%) being deficient and 20 (11%) had vitamin D insufficiency. Vitamin D deficiency was associated with 2.6-fold increased risk for COVID-19 (OR = 2.6; [95% CI 1.96-4.9]; P = 0.002. The FokI FF genotype was significantly more represented in patients compared to control group (OR = 4.05; [95% CI: 1.95-8.55]; P < 0.001). CONCLUSIONS: Vitamin D deficiency and VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. IMPACT: Vitamin D deficiency could be a modifiable risk factor for COVID-19 in children and adolescents because of its immune-modulatory action. To our knowledge, ours is the first such study to investigate the VDR Fok I polymorphism in Caucasian children and adolescents with COVID-19. Vitamin D deficiency and the VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. Clinical trials should be urgently conducted to test for causality and to evaluate the efficacy of vitamin D supplementation for prophylaxis and treatment of COVID-19 taking into account the VDR polymorphisms.


Subject(s)
COVID-19 , Receptors, Calcitriol , Vitamin D Deficiency , Adolescent , Child , Humans , COVID-19/genetics , Genetic Predisposition to Disease , Genotype , Receptors, Calcitriol/genetics , Risk Factors , SARS-CoV-2 , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
11.
Sci Rep ; 12(1): 19623, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380067

ABSTRACT

This paper offers an efficient tool to define the unknown parameters of electrical transformers. The proposed methodology is developed based on artificial hummingbird optimizer (AHO) to generate the best values of the transformer's unknown parameters. At initial stage, the parameters' extraction of the transformer electrical equivalent is adapted as an optimization function along with the associated operating inequality constraints. In which, the sum of absolute errors (SAEs) among many variables from nameplate data of transformers is decided to be minimized. Two test cases of 4 kVA and 15 kVA transformers ratings are demonstrated to indicate the ability of the AHO compared to other recent challenging optimizers. The proposed AHO achieves the lowest SAE's value than other competing algorithms. At advanced stage of this effort, the capture of percentage of loading to achieve maximum efficiency is ascertained. At later stage, the performance of transformers utilizing the extracted parameters cropped by the AHO to investigate the principal behavior at energization of these transformer units is made. At the end, it can be confirmed that the AHO produces best values of transformer parameters which help much in achieving accurate simulations for steady-state and inrush behaviors.

12.
Antioxidants (Basel) ; 11(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36290715

ABSTRACT

This work investigated the probable protective effect of an Alhagi maurorum ethanolic extract on the hepatotoxicity and neurotoxicity accompanied by neurobehavioral deficits caused by lead in rats. Rats in four groups were orally administered distilled water, ethanolic extract of A. maurorum (300 mg/kg BW daily), lead (100 mg/kg BW daily for 3 months), and lead + A. maurorum extract. The results demonstrated that lead exposure resulted in elevated locomotor activities and sensorimotor deficits associated with a decrease in brain dopamine levels. Moreover, lead exposure significantly increased liver function markers. In addition, the lead-treated rats exhibited extensive liver and brain histological changes and apoptosis. The lead treatment also triggered oxidative stress, as demonstrated by the increase in malondialdehyde (MDA) concentrations with a remarkable reduction in the activities of antioxidant enzymes, reduced glutathione (GSH) levels, and transcriptional mRNA levels of antioxidant genes in the liver and brain. Nevertheless, co-treatment with the A. maurorum extract significantly ameliorated the lead-induced toxic effects. These findings indicate that the A. maurorum extract has the ability to protect hepatic and brain tissues against lead exposure in rats through the attenuation of apoptosis and oxidative stress.

13.
Environ Sci Pollut Res Int ; 29(60): 89954-89968, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35859240

ABSTRACT

This study aimed to investigate the effectiveness of curcumin (CCM) against gentamicin (GEN) and sodium salicylates (NaS)-induced ototoxic effects in rats. For 15 consecutive days, seven rat groups were given 1 mL/rat physiological saline orally, 1 mL/rat olive oil orally, 50 mg/kg bwt CCM orally, 120 mg/kg bwt GEN intraperitoneally, 300 mg/kg bwt NaS intraperitoneally, CCM+GEN, or CCM+NaS. The distortion product otoacoustic emission measurements were conducted. The rats' hearing function and balance have been behaviorally assessed using auditory startle response, Preyer reflex, and beam balance scale tests. The serum lipid peroxidation and oxidative stress biomarkers have been measured. Immunohistochemical investigations of the apoptotic marker caspase-3 and the inflammatory indicator nuclear factor kappa (NF-κB) in cochlear tissues were conducted. GEN and NaS exposure resulted in deficit hearing and impaired ability to retain balance. GEN and NaS exposure significantly decreased the reduced glutathione level and catalase activity but increased malondialdehyde content. GEN and NaS exposure evoked pathological alterations in cochlear and vestibular tissues and increased caspase-3 and NF-κB immunoexpression. CCM significantly counteracted the GEN and NaS injurious effects. These outcomes concluded that CCM could be a naturally efficient therapeutic agent against GEN and NaS-associated ototoxic side effects.


Subject(s)
Curcumin , Gentamicins , Ototoxicity , Sodium Salicylate , Animals , Rats , Caspase 3 , Curcumin/pharmacology , Gentamicins/toxicity , NF-kappa B , Sodium Salicylate/toxicity , Apoptosis
14.
Eur Rev Med Pharmacol Sci ; 26(8): 3038-3045, 2022 04.
Article in English | MEDLINE | ID: mdl-35503606

ABSTRACT

OBJECTIVE: Post-COVID-19 syndrome appears to be a multi-organ illness with a broad spectrum of manifestations, occurring after even mild acute illness. Limited data currently available has suggested that vitamin D deficiency may play a role in COVID-19 cases. However, to our knowledge, no study has examined the frequency of vitamin D deficiency in post-COVID-19 cases and its effect on the symptom severity. The aim of this study is to both screen the frequency of vitamin D deficiency in post-COVID-19 syndrome patients and to study its relation to persistent symptoms. PATIENTS AND METHODS: A cross-sectional, single-center study was conducted involving all cases attending post-COVID-19 follow-up clinic from November 2020 to May 2021. Complete history, clinical examination, and laboratory analysis [kidney functions, serum calcium, C-reactive protein, serum ferritin, Serum 25-(OH) vitamin D] was done as well as HRCT chest. RESULTS: The study included 219 post-COVID-19 cases, 84% had deficient vitamin D levels (< 20 ng/dL); 11.4% had insufficient level (20-30 ng/dL) and only 4.9 % reported normal level. There was no link between levels of vitamin D with either the acute or post-COVID-19 symptoms in the studied groups. CONCLUSIONS: Despite the prevalence of vitamin D deficiency among the study population, no association was observed between the levels of vitamin D and post-COVID-19 symptoms. It appears that post-COVID-19 syndrome pathophysiology involves a more complex interaction with the immune system. Dedicated clinical trials are advised to better study vitamin D levels and the related disease severity in COVID-19 patients.


Subject(s)
COVID-19 , Vitamin D Deficiency , COVID-19/complications , COVID-19/epidemiology , Cross-Sectional Studies , Follow-Up Studies , Humans , Prevalence , SARS-CoV-2 , Vitamin D , Vitamins , Post-Acute COVID-19 Syndrome
15.
Toxicol Res ; 38(2): 187-194, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35419277

ABSTRACT

Organophosphates and synthetic pyrethroid insecticides have been commonly used in public health and agriculture. The present study aimed to evaluate the sub-lethal effects of organophosphates and synthetic pyrethroid insecticides on transaminases: glutamate oxaloacetate/aspartate transaminase (AST) and glutamate pyruvate/alanine transaminase (ALT) in Oreochromis niloticus. Fish were exposed to malathion (OP), chlorpyrifos (OP) and λ-cyhalothrin (synthetic pyrethroid) at sub-lethal concentrations of 1.425, 0.125 and 0.0039 ppm, respectively for 24 and 48 h. AST and ALT activities were shown to be remarkably (p < 0.05) decreased and increased, respectively in O. niloticus treated with the insecticides. The highest and lowest inhibition in AST level were noted as -12.2% and -12.2% in chlorpyrifos and λ-cyhalothrin 24 h treated fish samples, respectively. The highest and lowest elevation in ALT level were recorded as + 313% and 237% in 48 h chlorpyrifos and 24 h malathion treated fish samples, respectively. This indicates that the insecticides used in this study did not result in death but in changes in AST and ALT enzyme activities. Therefore, organophosphates (malathion, chlorpyrifos) and synthetic pyrethroid (λ-cyhalothrin) insecticides are toxic to fishes and could affects their survival in their natural habitat.

16.
Eat Behav ; 45: 101605, 2022 04.
Article in English | MEDLINE | ID: mdl-35219937

ABSTRACT

BACKGROUND: Night eating syndrome (NES) is associated with adverse health outcomes. This study evaluated the relationship between night eating severity, weight, and health behaviors. METHODS: Participants (N = 1017; 77.6% female, mean Body Mass Index (BMI) = 30.5, SD = 7.8 kg/m2, age = 51.1, SD = 15.0 years) were recruited from three health systems. Participants completed the Night Eating Questionnaire (NEQ) and questionnaires assessing sleep, chronotype, physical activity, diet, weight, and napping. RESULTS: In the overall sample, higher NEQ scores were associated with higher BMI (p < .001) and consumption of sugar-sweetened beverages (p < .001), as well as lower fruit/vegetable consumption (p = .001). Higher NEQ scores were associated with increased odds of having overweight/obesity (p < .001), eating fast food (p < .001), moderate-vigorous physical activity (p = .005), and smoking (p = .004). Participants who exceeded the screening threshold for NES (n = 48, 4.7%) reported elevated BMI (p = .014), an increased likelihood of overweight/obesity (p = .004), greater sugar-sweetened beverages consumption (p < .001), napping less than twice per week (p = .029), shorter sleep duration (p = .012), and a later chronotype (M = 4:55, SD = 2:45). CONCLUSION: Night eating severity was associated with obesity and intake of fast food and sugar-sweetened beverages. Interventions to address night eating and associated behaviors may enhance the efficacy of weight management interventions and promote engagement in positive health behaviors.


Subject(s)
Overweight , Sleep Wake Disorders , Adult , Body Mass Index , Eating , Feeding Behavior , Female , Health Behavior , Humans , Male , Middle Aged , Obesity , Surveys and Questionnaires
17.
Biology (Basel) ; 11(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35053072

ABSTRACT

The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. The chicken eggs were in ovo inoculated with TH at different doses (0.1, 1, 10, and 100 ug/egg). TH increased the mortality and abnormality rates and altered the neurochemical parameters of exposed embryos dose-dependently. TH also decreased the brain level of monoamines and amino acid neurotransmitters and decreased the activities of acetylcholine esterase (AchE) and Na+/K+-ATPase. The brain activity of catalase (CAT) and superoxide dismutase (SOD) was diminished with downregulation of their mRNA expressions in the brain tissue. When TH was co-administered with CA and RA, the toxic impacts of the insecticide were markedly attenuated, and they showed a complementary effect when used in combination. Taken together, these findings suggested that TH is neurotoxic to chicken embryos and is possibly neurotoxic to embryos of other vertebrates. The findings also demonstrated the antioxidant and neuroprotective effects of CA and RA. Based on the present findings, the CA and RA can be used as invaluable ameliorative of TH-induced toxicity.

18.
J Genet Eng Biotechnol ; 20(1): 13, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35080677

ABSTRACT

BACKGROUND: Association between Helicobacter pylori (H. pylori) and chronic hepatitis C (CHC) still remains controversial. This work is concerned with assessing the potential role of H. pylori in the progression of hepatitis C virus (HCV)-related chronic liver disease. RESULTS: A total of 449 individuals constituted this study (200 individuals were used to validate the assay while 249 individuals were used to assess the correlation between H. pylori infection and CHC). H. pylori antigen was quantified in serum samples using ELISA. As a consequence, our findings showed that H. pylori positivity was increased significantly (P = 0.021) with liver fibrosis progression as it was found in 44.45% of fibrotic patients and 71.88% of cirrhotic patients. We demonstrated that patients with F4 were accompanied by a significant (P < 0.05) increase in the concentration of H. pylori antigen displaying 16.52-fold and 1.34-fold increase in its level over F0 and F1-F3, respectively. Patients co-infected with H. pylori and HCV are 3.19 times (219%) more likely to experience cirrhosis than those who are mono-infected with HCV. This suggests that the risk for developing F4 was found to increase upon H. pylori co-infection when compared to CHC mono-infected patients. CONCLUSION: The elevated levels of H. pylori-antigen in HCV/H. pylori co-infection suggest increased susceptibility of co-infected patients for promoting hepatic fibrosis progression.

19.
Pathogens ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678400

ABSTRACT

The present context is a pioneer attempt to verify the ability of copepod, Lernanthropus kroyeri (L. kroyeri), to uptake and accumulate heavy metals. We primarily assess the prevalence of the parasite in various seasons and its clinical signs, as well as post-mortem changes in sea bass (Moron labrax). The morphological features of the parasite using a light microscope, the bioaccumulation of heavy metals in the tissues of both L. kroyeri and M. labrax (gills, muscles) using Flame Atomic Absorption Spectrometry, and the histopathological alterations were monitored. Fish (n = 200) were obtained from Ezbet Elborg and examined for the parasite, L. kroyeri. The results revealed that the total infection was recorded at 86%. The infested fish exhibited excessive mucous and ulceration at the site of attachment. The post-mortem lesion in the gills revealed a marbling appearance with destructed filaments. Various heavy metals (Zn, Co, Cu, and Cd) were detected in the tissues of L. kroyeri and M. labrax and, surprisingly, L. kroyeri had the ability to uptake and accumulate a high amount of Zn in its tissues. Infested fish accumulated a lower concentration of Zn in their tissue compared with the non-infested ones. Within the host tissue, the accumulation of Zn was higher in the gills compared with the muscles. The histopathological findings demonstrated scattered parasitic elements with the destruction of the gill lamellae. Taken together, we highlight the potential role of L. kroyeri to eliminate Zn and it can be utilized as a bio-indicator for metal monitoring studies for sustaining aquaculture.

20.
Antioxidants (Basel) ; 10(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34943009

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent against hematogenous and solid tumors with undesirable side effects including immunosuppression. Quercetin (QUR), a natural flavonoid abundant in fruits and vegetables, has a potent antioxidant activity. The aim of the current study was to assess the impact of QUR on DOX-induced hematological and immunological dysfunctions in a rodent model. Randomly grouped rats were treated as follows: control, QUR alone (50 mg/kg for 15 days per os), DOX alone (2.5 mg/kg I/P, three times a week, for two weeks), and co-treated rats with QUR for 15 days prior to and concomitantly with DOX (for two weeks), at the doses intended for groups two and three. DOX alone significantly disrupted the erythrogram and leukogram variables. Serum immunoglobulin (IgG, IgM, and IgE) levels and the activities of catalase (CAT) and superoxide dismutase (SOD) in spleen were declined. The DNA damage traits in spleen were elevated with an upregulation of the expression of the apoptotic markers (p53 and Caspase-3 genes) and the proinflammatory cytokines (IL-6 and TNF-α genes), while the expression of CAT gene was downregulated. These biochemical changes were accompanied by morphological changes in the spleen of DOX-treated rats. Co-treatment with QUR abated most of the DOX-mediated alterations in hematological variables, serum immunoglobulins, and spleen antioxidant status, pro-inflammatory and apoptotic responses, and histopathological alterations. In essence, these data suggest that QUR alleviated DOX-induced toxicities on the bone marrow, spleen, and antibody-producing cells. Supplementation of chemotherapy patients with QUR could circumvent the DOX-induced inflammation and immunotoxicity, and thus prevent chemotherapy failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...