Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37999351

ABSTRACT

Composite flat membranes were prepared using a dry uniaxial pressing process. The effect of the sintering temperature (850-950 °C) and smectite proportion (10-50 wt.%) on membrane properties, such as microstructure, mechanical strength, water permeability, and treatment performances, was explored. It was observed that increasing the sintering temperature and adding higher amounts of smectite increased the mechanical strength and shrinkage. Therefore, 850 °C was chosen as the optimum sintering temperature because the composite membranes had a very low shrinkage that did not exceed 5% with high mechanical strength, above 23 MPa. The study of smectite addition (10-50 wt.%) showed that the pore size and water permeability were significantly reduced from 0.98 to 0.75 µm and from 623 to 371 L·h-1·m-2·bar-1, respectively. Furthermore, the application of the used membranes in the treatment of indigo blue (IB) solutions exhibited an almost total turbidity removal. While the removal of color and COD decreased from 95% to 76%, respectively, they decreased from 95% to 52% when the amount of smectite increased. To verify the treated water's low toxicity, a germination test was performed. It has been shown that the total germination of linseed grains irrigated by MS10-Z90 membrane permeate was identical to that irrigated with distilled water. Finally, based on its promising properties, its excellent separation efficiency, and its low energy consumption, the MS10-Z90 (10 wt.% smectite and 90 wt.% zeolite) sintered at 850 °C could be recommended for the treatment of colored industrial wastewater.

2.
Membranes (Basel) ; 12(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36005728

ABSTRACT

In the present work, optimized ultrafiltration conditions, using a ceramic multi tubular titania membrane (150 KDa), were investigated for the treatment of tuna cooking juice, for water reuse in the industrial process. The interactive effects of the volume concentrating factor (VCF) (1.03-4.25), feed temperature (T) (20-60 °C), and applied transmembrane pressure (ΔP) (2-5 bar) on protein removal (R protein) and permeate flux (J) were determined. A Box-Behnken experimental design (BBD) with the response surface methodology (RSM) was used for statistical analysis, modeling, and optimization of the operating conditions. The analysis of variance (ANOVA) results proved that the protein removal and permeate flux were significant and represented good correlation coefficients of 0.9859 and 0.9294, respectively. Mathematical modeling showed that the best conditions were VCF = 1.5 and a feed temperature of 60 °C, under a transmembrane pressure of 5 bar. The fouling mechanism was checked by applying a polarization concentration model. Determination of the gel concentration confirmed the results found in the mass balance calculation and proved that the VCF must not exceed 1.5. The membrane regeneration efficiency was proven by determining the water permeability after the chemical cleaning process.

3.
Membranes (Basel) ; 12(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35877879

ABSTRACT

This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oil and turbidity, and the high removal of heavy metals such as Pb, Zn, and Cu (>95%) was also applied. The interactive effects of the initial oil concentration (19−117 g/L), feed temperature (20−60 °C), and applied transmembrane pressure (2−5 bar) on the chemical oxygen demand removal (RCOD) and permeate flux (Jw) were investigated. A Box−Behnken experimental design (BBD) for response surface methodology (RSM) was used for the statistical analysis, modelling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the COD removal and permeate flux were significant since they showed good correlation coefficients of 0.985 and 0.901, respectively. Mathematical modelling revealed that the best conditions were an initial oil concentration of 117 g/L and a feed temperature of 60 °C, under a transmembrane pressure of 3.5 bar. In addition, the effect of the concentration under the optimized conditions was studied. It was found that the maximum volume concentrating factor (VCF) value was equal to five and that the pollutant retention was independent of the VCF. The fouling mechanism was estimated by applying Hermia's model. The results indicated that the membrane fouling given by the decline in the permeate flux over time could be described by the cake filtration model. Finally, the efficiency of the membrane regeneration was proved by determining the water permeability after the chemical cleaning process.

SELECTION OF CITATIONS
SEARCH DETAIL
...