Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 17(1): 84, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37482611

ABSTRACT

Modification of starch is a potential basic research aiming to improve its water barrier properties. The general purpose of this study is to manufacture cross-linked iodinated starch citrate (ISC) with a degree of substitution (DS) ≈ 0.1 by modifying native corn starch with citric acid in the presence of iodine as an oxidizing agent. Thermoplastic starch (TPS) was generated with urea as a plasticizer and blended with various concentrations of ISC of (2, 4, 6%) (wt/wt) to obtain (UTPS/ISC2, UTPS/ISC4, and UTPS/ISC6). Nanocomposite film was formed from UTPS/ISC2 in presence of stabilized iodinated cellulose nanocrystals UTPS/ISC2/SICNCs via gelatinization at a temperature of 80ºC. Water solubility and water vapor release were studied amongst the water barrier features. The fabricated starch-based composite films were evaluated utilizing Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electronic Microscope analysis (SEM), surface area, and tensile measurements. The adsorption of crystal violet (CV) dye onto produced samples was examined in an aqueous solution. The findings revealed that the UTPS/ISC2/ISCNCs has 83% crystal violet elimination effectiveness. Moreover, the adsorption isotherms were assessed and figured out to vary in the order of Langmuir > Temkin > Freundlich > Dubinin-Radushkevich.

2.
Polymers (Basel) ; 13(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34301035

ABSTRACT

From the environmental point of view, there is high demand for the preparation of polymeric materials for various applications from renewable and/or waste sources. New lignin-based spun fibers were produced, characterized, and probed for use in methylene blue (MB) dye removal in this study. The lignin was extracted from palm fronds (PF) and banana bunch (BB) feedstock using catalytic organosolv treatment. Different polymer concentrations of either a plasticized blend of renewable polymers such as polylactic acid/polyhydroxybutyrate blend (PLA-PHB-ATBC) or polyethylene terephthalate (PET) as a potential waste material were used as matrices to generate lignin-based fibers by the electrospinning technique. The samples with the best fiber morphologies were further modified after iodine handling to ameliorate and expedite the thermostabilization process. To investigate the adsorption of MB dye from aqueous solution, two approaches of fiber modification were utilized. First, electrospun fibers were carbonized at 500 °C with aim of generating lignin-based carbon fibers with a smooth appearance. The second method used an in situ oxidative chemical polymerization of m-toluidine monomer to modify electrospun fibers, which were then nominated by hybrid composites. SEM, TGA, FT-IR, BET, elemental analysis, and tensile measurements were employed to evaluate the composition, morphology, and characteristics of manufactured fibers. The hybrid composite formed from an OBBL/PET fiber mat has been shown to be a promising adsorbent material with a capacity of 9 mg/g for MB dye removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...