Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 36(1): 177-185, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32496129

ABSTRACT

Three new [nilotinins M8‒M10 (1‒3)] and two known [tamarixinin A (4) and gemin D (5)] ellagitannins and seven simple phenolics [gallic acid (6), methyl gallate (7), 3,4-di-O-methylgallic acid (8), ellagic acid (9), 3-O-methylellagic acid (10), methyl ferulate 3-O-sulphate (11), and 7,4'-di-O-methylkaempferol (12)] were isolated from the halophytic plant Tamarix nilotica (Ehrenb.) Bunge (Tamaricaceae). Their structures were determined based on intensive spectroscopic studies and comparisons with reported data. Compounds 4, and 6-8 were evaluated for their cytotoxicity against lung adenocarcinoma cell line (A549) and anti-leishmanial activity against Leishmania major. Compounds 4, 6 and 7 showed promising cytotoxic properties against A549 (IC50 29 ± 2.3, 10.5 ± 0.7, and 20.7 ± 1.9 µg/mL), while compounds 4 and 7 showed higher growth-inhibitory effects against L. major promastigotes (IC50 40.5 ± 2.7 and 38.4 ± 2.5 µg/mL), as compared with the standards doxorubicin (IC50 0.42 µg/mL) and miltefosine (IC50 9.43 µg/mL), respectively.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Hydrolyzable Tannins , Tamaricaceae , A549 Cells , Humans , Hydrolyzable Tannins/pharmacology , Leishmania major/drug effects , Molecular Structure , Phenols , Plant Extracts/pharmacology , Salt-Tolerant Plants/chemistry , Tamaricaceae/chemistry
2.
Onco Targets Ther ; 14: 3849-3860, 2021.
Article in English | MEDLINE | ID: mdl-34194230

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the most serious and lethal human cancers with a snowballing incidence around the world. The natural product celastrol has also been widely documented as a potent anti-inflammatory, anti-angiogenic, and anti-oxidant. PURPOSE: To elucidate the antitumor effect of celastrol on pancreatic cancer cells and its modulatory role on whole genome expression. METHODS: The antitumor activity of celastrol on a panel of pancreatic cancer cells has been evaluated by Sulforhodamine B assay. Caspase 3/7 and histone-associated DNA fragments assays were done for apoptosis measurement. Additionally, prostaglandin (PGE2) inhibition was evaluated. Moreover, a microarray gene expression profiling was carried out to detect possible key players that modulate the antitumor effects of celastrol on cells of pancreatic cancer. RESULTS: Our findings indicated that celastrol suppresses the cellular growth of pancreatic cancer cells, induces apoptosis, and inhibits PGE2 production. Celastrol modulated many signaling genes and its cytotoxic effect was mainly mediated via over-expression of ATF3 and DDIT3, and down-expression of RRM2 and MCM4. CONCLUSION: The current study aims to be a starting point to generate a hypothesis on the most significant regulatory genes and for a full dissection of the celastrol possible effects on each single gene to prevent the pancreatic cancer growth.

3.
Molecules ; 26(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073447

ABSTRACT

Food preservatives such as NaNO2, which are widely used in human food products, undoubtedly affect, to some extent, human organs and health. For this reason, there is a need to reduce the hazards of these chemical preservatives, by replacing them with safe natural bio-preservatives, or adding them to synthetic ones, which provides synergistic and additive effects. The Citrus genus provides a rich source of such bio-preservatives, in addition to the availability of the genus and the low price of citrus fruit crops. In this study, we identify the most abundant flavonoids in citrus fruits (hesperidin) from the polar extract of mandarin peels (agro-waste) by using spectroscopic techniques, as well as limonene from the non-polar portion using GC techniques. Then, we explore the synergistic and additive effects of hesperidin from total mandarin extract with widely used NaNO2 to create a chemical preservative in food products. The results are promising and show a significant synergistic and additive activity. The combination of mandarin peel extract with NaNO2 had synergistic antibacterial activity against B. cereus, Staph. aureus, E. coli, and P. aeruginosa, while hesperidin showed a synergistic effect against B. cereus and P. aeruginosa and an additive effect against Staph. aureus and E. coli. These results refer to the ability of reducing the concentration of NaNO2 and replacing it with a safe natural bio-preservative such as hesperidin from total mandarin extract. Moreover, this led to gaining benefits from their biological and nutritive values.


Subject(s)
Anti-Bacterial Agents/analysis , Citrus/chemistry , Food Contamination/prevention & control , Hesperidin/chemistry , Sodium Nitrite/chemistry , Antioxidants/analysis , Bacillus cereus , Drug Synergism , Escherichia coli , Flavonoids/chemistry , Food Preservatives , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Plant Extracts/chemistry , Pseudomonas aeruginosa , Staphylococcus aureus
4.
Colloids Surf B Biointerfaces ; 203: 111724, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33838582

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus (COVID-19), is the virus responsible for over 69,613,607 million infections and over 1,582,966 deaths worldwide. All treatment measures and protocols were considered to be supportive only and not curative. During this current coronavirus pandemic, searching for pharmaceutical or traditional complementary and integrative medicine to assist with prevention, treatment, and recovery has been advantageous. These phytopharmaceuticals and nutraceuticals can be more economic, available, safe and lower side effects. This is in silico comparison study of ten phenolic antiviral agents against SARS-CoV-2, as well as isolation of the most active metabolite from natural sources. Zinc oxide nanoparticles (ZnO NPs) were also then prepared using these metabolite as a reducing agent. All tested compounds showed predicted anti-SARS-CoV-2 activity. Hesperidin showed the highest docking score, this leads us to isolate it from the orange peels and we confirmed its structure by conventenional spectroscopic analysis. In addition, synthesis of hesperidin zinc oxide nanoparticles was characterized by UV, IR, XRD and TEM. In vitro antiviral activity of hesperidin and ZnO NPs was evaluated against hepatitis A virus as an example of RNA viruses. However, ZnO NPs and hesperidin showed antiviral activity against HAV but ZnO NPs showed higher activity than hesperidin. Thus, hesperidin and its mediated ZnO nanoparticles are willing antiviral agents and further studies against SARS-CoV-2 are required to be used as a potential treatment.


Subject(s)
COVID-19 , Hesperidin , Nanoparticles , Zinc Oxide , Antiviral Agents/pharmacology , Computer Simulation , Hesperidin/pharmacology , Humans , SARS-CoV-2 , Zinc Oxide/pharmacology
5.
Neurotox Res ; 37(1): 77-92, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31332714

ABSTRACT

Systemic administration of 3-nitropropionic acid (3-NPA) is commonly used to induce Huntington's disease (HD)-like symptoms in experimental animals. Here, the potential neuroprotective efficiency of rutin and selenium (RSe) co-administration on 3-NPA-induced HD-like symptoms model in mice was investigated. 3-NPA injection evoked severe alterations in redox status, as indicated via increased striatal malondialdehyde and nitric oxide levels, accompanied by a decrease in levels of antioxidant molecules including glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. Moreover, 3-NPA potentiated inflammatory status by enhancing the production of interleukin-1ß, tumor necrosis factor-α, and myeloperoxidase activity. Pro-apoptotic cascade was also recorded in the striatum as evidenced through upregulation of cleaved caspase-3 and Bax, and downregulation of Bcl-2. 3-NPA activated astrocytes as indicated by the upregulated glial fibrillary acidic protein and inhibited brain-derived neurotrophic factor. Furthermore, perturbations in cholinergic and monoaminergic systems were observed. RSe provided neuroprotective effects by preventing body weight loss, oxidative stress, neuroinflammation, and the apoptotic cascade. RSe inhibited the activation of astrocytes, increased brain-derived neurotrophic factor, and improved cholinergic and monoaminergic transmission following 3-NPA intoxication. Taken together, RSe co-administration may prevent or delay the progression of HD and its associated impairments through its antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects.


Subject(s)
Huntington Disease/prevention & control , Oxidative Stress/drug effects , Rutin/pharmacology , Selenium/pharmacology , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Caspase 3 , Catalase/metabolism , Corpus Striatum/metabolism , Down-Regulation , Drug Synergism , Glial Fibrillary Acidic Protein/biosynthesis , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Huntington Disease/chemically induced , Huntington Disease/metabolism , Interleukin-1beta/biosynthesis , Male , Malondialdehyde/metabolism , Mice , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Nitro Compounds , Peroxidase/metabolism , Propionates , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Superoxide Dismutase/metabolism , Synaptic Transmission/drug effects , Tumor Necrosis Factor-alpha/biosynthesis , Up-Regulation , bcl-2-Associated X Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...