Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(6): e1012361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941361

ABSTRACT

The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Burkholderia , Anti-Bacterial Agents/pharmacology , Burkholderia/drug effects , Down-Regulation
2.
ISME Commun ; 3(1): 95, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684358

ABSTRACT

The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.

3.
PLoS Biol ; 19(10): e3001406, 2021 10.
Article in English | MEDLINE | ID: mdl-34637438

ABSTRACT

Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria-phage interactions in naturally structured environments.


Subject(s)
Bacteriophages/physiology , Environment , Escherichia coli/virology , Computer Simulation , Phenotype , Receptors, Virus/metabolism
4.
ACS Infect Dis ; 7(6): 1848-1858, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34000805

ABSTRACT

Environmental and intracellular stresses can perturb protein homeostasis and trigger the formation and accumulation of protein aggregates. It has been recently suggested that the level of protein aggregates accumulated in bacteria correlates with the frequency of persister and viable but nonculturable cells that transiently survive treatment with multiple antibiotics. However, these findings have often been obtained employing fluorescent reporter strains. This enforced heterologous protein expression facilitates the visualization of protein aggregates but could also trigger the formation and accumulation of protein aggregates. Using microfluidics-based single-cell microscopy and a library of green fluorescent protein reporter strains, we show that heterologous protein expression favors the formation of protein aggregates. We found that persister and viable but nonculturable bacteria surviving treatment with antibiotics are more likely to contain protein aggregates and downregulate the expression of heterologous proteins. Our data also suggest that such aggregates are more basic with respect to the rest of the cell. These findings provide evidence for a strong link between heterologous protein expression, protein aggregation, intracellular pH, and phenotypic survival to antibiotics, suggesting that antibiotic treatments against persister and viable but nonculturable cells could be developed by modulating protein aggregation and pH regulation.


Subject(s)
Escherichia coli , Protein Aggregates , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Escherichia coli/genetics , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...