Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Pharmacol ; 13: 1057083, 2022.
Article in English | MEDLINE | ID: mdl-36506513

ABSTRACT

The phosphodiesterase (PDE) enzymes, key regulator of the cyclic nucleotide signal transduction system, are long-established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a particularly high number of clinical trials involving PDE inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 87 agents with PDE-inhibiting capacity, of which 85 interact with PDE enzymes as primary target. We provide an overview of the clinical drug development with focus on the current clinical uses, novel molecules and indications, highlighting relevant clinical studies. We found that the bulk of current clinical uses for this class of therapeutic agents are chronic obstructive pulmonary disease (COPD), vascular and cardiovascular disorders and inflammatory skin conditions. In COPD, particularly, PDE inhibitors are characterised by the compliance-limiting adverse reactions. We discuss efforts directed to appropriately adjusting the dose regimens and conducting structure-activity relationship studies to determine the effect of structural features on safety profile. The ongoing development predominantly concentrates on central nervous system diseases, such as schizophrenia, Alzheimer's disease, Parkinson's disease and fragile X syndrome; notable advancements are being also made in mycobacterial infections, HIV and Duchenne muscular dystrophy. Our analysis predicts the diversification of PDE inhibitors' will continue to grow thanks to the molecules in preclinical development and the ongoing research involving drugs in clinical development.

2.
Cell Biosci ; 12(1): 151, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36076256

ABSTRACT

Monoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2ß, gene: TFAP2Β). AP-2ß regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2ß, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2ß as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2ß as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.

3.
Pharmacol Rev ; 74(3): 506-551, 2022 07.
Article in English | MEDLINE | ID: mdl-35710135

ABSTRACT

Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal ß -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.


Subject(s)
Carnitine , Insulin Resistance , Biomarkers , Carnitine/analogs & derivatives , Carnitine/chemistry , Carnitine/metabolism , Carnitine/therapeutic use , Fatty Acids/metabolism , Humans , Insulin Resistance/physiology
4.
Transl Neurodegener ; 11(1): 25, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449079

ABSTRACT

Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Biomarkers , Humans , Retina/metabolism , Retina/pathology
5.
Pharmacol Rev ; 73(4): 1-32, 2021 10.
Article in English | MEDLINE | ID: mdl-34663683

ABSTRACT

Brain cancer is a formidable challenge for drug development, and drugs derived from many cutting-edge technologies are being tested in clinical trials. We manually characterized 981 clinical trials on brain tumors that were registered in ClinicalTrials.gov from 2010 to 2020. We identified 582 unique therapeutic entities targeting 581 unique drug targets and 557 unique treatment combinations involving drugs. We performed the classification of both the drugs and drug targets based on pharmacological and structural classifications. Our analysis demonstrates a large diversity of agents and targets. Currently, we identified 32 different pharmacological directions for therapies that are based on 42 structural classes of agents. Our analysis shows that kinase inhibitors, chemotherapeutic agents, and cancer vaccines are the three most common classes of agents identified in trials. Agents in clinical trials demonstrated uneven distribution in combination approaches; chemotherapy agents, proteasome inhibitors, and immune modulators frequently appeared in combinations, whereas kinase inhibitors, modified immune effector cells did not as was shown by combination networks and descriptive statistics. This analysis provides an extensive overview of the drug discovery field in brain cancer, shifts that have been happening in recent years, and challenges that are likely to come. SIGNIFICANCE STATEMENT: This review provides comprehensive quantitative analysis and discussion of the brain cancer drug discovery field, including classification of drug, targets, and therapies.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Pharmaceutical Preparations , Brain Neoplasms/drug therapy , Drug Discovery , Humans , Proteasome Inhibitors
7.
Front Cell Dev Biol ; 9: 708754, 2021.
Article in English | MEDLINE | ID: mdl-34350187

ABSTRACT

Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More than half of the 58 proteins identified with the 5TM architecture belong to 12 families with two or more members. Interestingly, more than half the proteins in the dataset function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this dataset in large contrast with other TM groups. The three major 5TM families, which comprise nearly 30% of the dataset, include the tweety family, the sideroflexin family and the Yip1 domain (YIPF) family. We also analyzed the evolutionary origin of these three families. The YIPF family appears to be the most ancient with presence in bacteria and archaea, while the tweety and sideroflexin families are first found in eukaryotes. We found no evidence of common decent for these three families. About 30% of the 5TM proteins have prominent expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumor types. Nearly 10% of the 5TMs are still not fully characterized and further investigation of their functional activities and expression is warranted. This study provides the first comprehensive analysis of proteins with the 5TM architecture, providing details of their unique characteristics.

8.
Nat Rev Drug Discov ; 20(11): 839-861, 2021 11.
Article in English | MEDLINE | ID: mdl-34354255

ABSTRACT

The FDA approval of imatinib in 2001 was a breakthrough in molecularly targeted cancer therapy and heralded the emergence of kinase inhibitors as a key drug class in the oncology area and beyond. Twenty years on, this article analyses the landscape of approved and investigational therapies that target kinases and trends within it, including the most popular targets of kinase inhibitors and their expanding range of indications. There are currently 71 small-molecule kinase inhibitors (SMKIs) approved by the FDA and an additional 16 SMKIs approved by other regulatory agencies. Although oncology is still the predominant area for their application, there have been important approvals for indications such as rheumatoid arthritis, and one-third of the SMKIs in clinical development address disorders beyond oncology. Information on clinical trials of SMKIs reveals that approximately 110 novel kinases are currently being explored as targets, which together with the approximately 45 targets of approved kinase inhibitors represent only about 30% of the human kinome, indicating that there are still substantial unexplored opportunities for this drug class. We also discuss trends in kinase inhibitor design, including the development of allosteric and covalent inhibitors, bifunctional inhibitors and chemical degraders.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Discovery/trends , Protein Kinase Inhibitors/therapeutic use , Protein Kinases , Antineoplastic Agents/chemistry , Antineoplastic Agents/history , Catalytic Domain , Drug Approval , Drug Delivery Systems , Drug Design , History, 21st Century , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/history
9.
Br J Pharmacol ; 178(23): 4588-4607, 2021 12.
Article in English | MEDLINE | ID: mdl-34379793

ABSTRACT

Migraine is the sixth most prevalent disease globally, a major cause of disability, and it imposes an enormous personal and socio-economic burden. Migraine treatment is often limited by insufficient therapy response, leading to the need for individually adjusted treatment. In this review, we analyse historical and current pharmaceutical development approaches in acute and chronic migraine based on a comprehensive and systematic analysis of Food and Drug Administration (FDA)-approved drugs and those under investigation. The development of migraine therapeutics has significantly intensified during the last 3 years, as shown by our analysis of the trends of drug development between 1970 and 2020. The spectrum of drug targets has expanded considerably, which has been accompanied by an increase in the number of specialised clinical trials. This review highlights the mechanistic implications of FDA-approved and currently investigated drugs and discusses current and future therapeutic options based on identified drug classes of interest.


Subject(s)
Migraine Disorders , Drug Delivery Systems , Drug Development , Humans , Migraine Disorders/drug therapy , Pharmaceutical Preparations
10.
Br J Clin Pharmacol ; 87(12): 4577-4597, 2021 12.
Article in English | MEDLINE | ID: mdl-33971031

ABSTRACT

The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising.


Subject(s)
Antineoplastic Agents , HIV Infections , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , HIV Infections/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans
11.
Front Pharmacol ; 12: 807548, 2021.
Article in English | MEDLINE | ID: mdl-35126141

ABSTRACT

Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.

12.
Nat Rev Drug Discov ; 19(10): 695-710, 2020 10.
Article in English | MEDLINE | ID: mdl-32873970

ABSTRACT

Historically, the main classes of drug targets have been receptors, enzymes, ion channels and transporters. However, owing largely to the rise of antibody-based therapies in the past two decades, soluble protein ligands such as inflammatory cytokines have become an increasingly important class of drug targets. In this Review, we analyse drugs targeting ligands that have reached clinical development at some point since 1992. We identify 291 drugs that target 99 unique ligands, and we discuss trends in the characteristics of the ligands, drugs and indications for which they have been tested. In the last 5 years, the number of ligand-targeting drugs approved by the FDA has doubled to 34, while the number of clinically validated ligand targets has doubled to 22. Cytokines and growth factors are the predominant types of targeted ligands (70%), and inflammation and autoimmune disorders, cancer and ophthalmological diseases are the top therapeutic areas for both approved agents and agents in clinical studies, reflecting the central role of cytokine and/or growth factor pathways in such diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Cytokines/antagonists & inhibitors , Drug Discovery , Inflammation/drug therapy , Intercellular Signaling Peptides and Proteins/chemistry , Neoplasms/drug therapy , Pharmaceutical Preparations/metabolism , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Cytokines/metabolism , Drug Design , Humans , Inflammation/metabolism , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Neoplasms/metabolism , Neoplasms/pathology
13.
Expert Opin Drug Discov ; 15(11): 1291-1307, 2020 11.
Article in English | MEDLINE | ID: mdl-32648789

ABSTRACT

INTRODUCTION: The G protein-coupled receptors (GPCR) superfamily is among the most widely exploited targets for therapeutics, with drugs mainly targeting the Rhodopsin, Glutamate and Secretin family receptors. The receptors of the Adhesion family, however, remain comparatively unexplored in this aspect. This review aims to discuss the druggability of Adhesion GPCRs (aGPCR), highlighting the relevant opportunities and challenges. AREAS COVERED: In this review, the authors provide a disease-oriented summary of aGPCR involvement in humans and discuss the current status of characterizing therapeutic agents with a focus on new opportunities using low molecular weight substances. EXPERT OPINION: The small molecule antagonist dihydromunduletone and partial agonist 3-α-acetoxydihydrodeoxygedunin, along with the endogenous natural ligand synaptamide currently comprise some of the most important discoveries made in an attempt to characterize aGPCR druggability. The small molecule modulators provide important insights regarding the structure-activity relationship and suggest that targeting the tethered peptide agonist results in a nonselective pharmacological action, while synaptamide may be considered a potentially attractive tool to achieve a higher degree of selectivity.


Subject(s)
Drug Development , Drug Discovery , Receptors, G-Protein-Coupled/drug effects , Animals , Humans , Ligands , Molecular Targeted Therapy , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
14.
Front Cell Dev Biol ; 7: 386, 2019.
Article in English | MEDLINE | ID: mdl-32039202

ABSTRACT

As the structure and functions of proteins are correlated, investigating groups of proteins with the same gross structure may provide important insights about their functional roles. Trispanins, proteins that contain three alpha-helical transmembrane (3TM) regions, have not been previously studied considering their transmembrane features. Our comprehensive identification and classification using bioinformatic methods describe 152 3TM proteins. These proteins are frequently involved in membrane biosynthesis and lipid biogenesis, protein trafficking, catabolic processes, and in particular signal transduction due to the large ionotropic glutamate receptor family. Proteins that localize to intracellular compartments are overrepresented in the dataset in comparison to the entire human transmembrane proteome, and nearly 45% localize specifically to the endoplasmic reticulum (ER). Furthermore, nearly 20% of the trispanins function in lipid metabolic processes and transport, which are also overrepresented. Nearly one-third of trispanins are identified as being targeted by drugs and/or being associated with diseases. A high number of 3TMs have unknown functions and based on this analysis we speculate on the functional involvement of uncharacterized trispanins in relationship to disease or important cellular activities. This first overall study of trispanins provides a unique analysis of a diverse group of membrane proteins.

16.
Trends Pharmacol Sci ; 39(6): 525-535, 2018 06.
Article in English | MEDLINE | ID: mdl-29779531

ABSTRACT

High levels of productivity, with an increasing number of approvals for new molecular entities (NMEs) by the FDA during the past decade, have coincided with the emergence of innovative drugs for treatments of rare diseases that have utilized the FDA orphan drug program. Since 2000, NMEs with orphan designation encompass a significant portion of approved drugs and constitute about 80% of the approved drugs that have established novel human genome-encoded products in recent years. Biological approvals are also expanding, with 40% of the approved biological agents having orphan designation. This trend illustrates a pivot within the pharmaceutical industry: from research programs that focus on canonical blockbuster indications and targets, towards the establishment of new treatments for rare and difficult to treat diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Discovery/trends , Neoplasms/drug therapy , Orphan Drug Production/classification , Rare Diseases/drug therapy , Antineoplastic Agents/classification , Clinical Trials as Topic , Drug Discovery/economics , Humans , Orphan Drug Production/economics
17.
Angew Chem Int Ed Engl ; 57(3): 836-840, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29194875

ABSTRACT

The cyclic depsipeptide FR900359 (FR), isolated from the tropical plant Ardisia crenata, is a strong and selective inhibitor of Gq proteins, making it an indispensable pharmacological tool to study Gq-related processes, as well as a promising drug candidate. Gq inhibition is a novel mode of action for defense chemicals and crucial for the ecological function of FR, as shown by in vivo experiments in mice, its affinity to insect Gq proteins, and insect toxicity studies. The uncultured endosymbiont of A. crenata was sequenced, revealing the FR nonribosomal peptide synthetase (frs) gene cluster. We here provide a detailed model of FR biosynthesis, supported by in vitro enzymatic and bioinformatic studies, and the novel analogue AC-1, which demonstrates the flexibility of the FR starter condensation domains. Finally, expression of the frs genes in E. coli led to heterologous FR production in a cultivable, bacterial host for the first time.


Subject(s)
Depsipeptides/biosynthesis , Depsipeptides/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Insect Proteins/metabolism , Signal Transduction/drug effects , Animals , Bombyx/metabolism , Chromosomes, Artificial, Bacterial , Computational Biology , Depsipeptides/metabolism , Escherichia coli/genetics , Gene Transfer Techniques , HEK293 Cells , Humans , Multigene Family , Peptide Synthases/genetics , Primulaceae/chemistry , Sf9 Cells , Tandem Mass Spectrometry
18.
Nat Rev Drug Discov ; 16(12): 829-842, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29075003

ABSTRACT

G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.


Subject(s)
Drug Design , Drug Discovery/trends , Receptors, G-Protein-Coupled/drug effects , Allosteric Regulation , Animals , Drug Approval , Humans , Molecular Targeted Therapy , Receptors, G-Protein-Coupled/metabolism
19.
Sci Rep ; 7(1): 12387, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28959054

ABSTRACT

The dramatic increase in membrane proteome complexity is arguably one of the most pivotal evolutionary events that underpins the origin of multicellular animals. However, the origin of a significant number of membrane families involved in metazoan development has not been clarified. In this study, we have manually curated the membrane proteomes of 22 metazoan and 2 unicellular holozoan species. We identify 123,014 membrane proteins in these 24 eukaryotic species and classify 86% of the dataset. We determine 604 functional clusters that are present from the last holozoan common ancestor (LHCA) through many metazoan species. Intriguingly, we show that more than 70% of the metazoan membrane protein families have a premetazoan origin. The data show that enzymes are more highly represented in the LHCA and expand less than threefold throughout metazoan species; in contrast to receptors that are relatively few in the LHCA but expand nearly eight fold within metazoans. Expansions related to cell adhesion, communication, immune defence, and developmental processes are shown in conjunction with emerging biological systems, such as neuronal development, cytoskeleton organization, and the adaptive immune response. This study defines the possible LHCA membrane proteome and describes the fundamental functional clusters that underlie metazoan diversity and innovation.


Subject(s)
Biodiversity , Evolution, Molecular , Membrane Proteins/genetics , Proteome/genetics , Animals , Datasets as Topic , Enzymes/genetics , Phylogeny
20.
J Affect Disord ; 220: 117-128, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28618313

ABSTRACT

BACKGROUND: Studies of epigenetics and transcriptional activity in adolescents may provide knowledge about possible preventive strategies of depression. METHODS: We present a methylome-wide association study (MWAS) and cohort validation analysis of depression in adolescents, in two separate cohorts: discovery (n=93) and validation data set 1 (n=78). The genome-wide methylation pattern was measured from whole blood using the Illumina 450K array. A second validation cohort, validation data set 2, consists of post-mortem brain biopsies from depressed adults (n=58). We performed a MWAS by robust multiple linear regressions of methylation to a modified risk-score assessment of depression. Methylation levels of candidate CpG sites were correlated with expression levels of the associated gene in an independent cohort of 11 healthy volunteers. RESULTS: The methylation state of two CpG sites reliably predicted ratings of depression in adolescents (cg13227623 and cg04102384) (p<10E-06). Cohort validation analysis confirmed cg04102384 - located in the promoter region of microRNA 4646 (MIR4646) - to be hypomethylated in both validation data set 1 and validation data set 2 (p<0.05). Cg04102384 was inversely correlated to expression levels of MIR4646-3p in healthy controls (p<0.05). LIMITATIONS: MIR4646 was not differentially expressed in a subset of samples with adolescent depression measured by qRT-PCR measurements. CONCLUSION: We identify a specific MIR4646 associated epigenetic risk site to be associated with depression in adolescents. Cg04102384 putatively regulates gene expression of MIR4646-3p. Target gene prediction and gene set overrepresentation analysis revealed involvement of this miRNA in fatty acid elongation, a process related to omega-3 fatty acids, previously associated with depression.


Subject(s)
DNA Methylation , Depressive Disorder/genetics , Epigenesis, Genetic , MicroRNAs/genetics , Acetyltransferases/genetics , Adolescent , Cohort Studies , CpG Islands/genetics , Epigenomics , Fatty Acid Elongases , Fatty Acids, Omega-3/genetics , Female , Gene Expression , Genome-Wide Association Study , Humans , Male , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...