Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38939967

ABSTRACT

Fundamental questions in bud dormancy remain, including what temperatures fulfill dormancy requirements (i.e., chill accumulation). Recent studies demonstrate freezing temperatures promote chill accumulation and cold hardiness influences time to budbreak - the phenotype used for dormancy evaluations. Here we evaluated bud cold hardiness (CH) and budbreak responses of grapevines (Vitis hybrids) throughout chill accumulation under three treatments: constant (5 °C), fluctuating (-3.5 to 6.5 °C daily), and field conditions (Madison, WI, USA). Chill treatments experiencing lower temperatures promoted greater gains in cold hardiness (CHfield>CHfluctuating>CHconstant). All treatments decreased observed time to budbreak with increased chill accumulation. However, perceived treatment effectiveness changed when time to budbreak was adjusted to remove cold acclimation effects. Among three classic chill models (North Carolina, Utah, and Dynamic), none were able to correctly describe adjusted time to budbreak responses to chill accumulation. Thus, a new model is proposed that expands the range of chill accumulation temperatures to include freezing temperatures and enhances chill accumulation under fluctuating temperature conditions. Most importantly, our analysis demonstrates adjustments for uneven acclimation change the perceived effectiveness of chill treatments. Therefore, future work in bud dormancy would benefit from simultaneously evaluating cold hardiness.

2.
Hortic Res ; 11(2): uhad286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38487294

ABSTRACT

Accurate and real-time monitoring of grapevine freezing tolerance is crucial for the sustainability of the grape industry in cool climate viticultural regions. However, on-site data are limited due to the complexity of measurement. Current prediction models underperform under diverse climate conditions, which limits the large-scale deployment of these methods. We combined grapevine freezing tolerance data from multiple regions in North America and generated a predictive model based on hourly temperature-derived features and cultivar features using AutoGluon, an automated machine learning engine. Feature importance was quantified by AutoGluon and SHAP (SHapley Additive exPlanations) value. The final model was evaluated and compared with previous models for its performance under different climate conditions. The final model achieved an overall 1.36°C root-mean-square error during model testing and outperformed two previous models using three test cultivars at all testing regions. Two feature importance quantification methods identified five shared essential features. Detailed analysis of the features indicates that the model has adequately extracted some biological mechanisms during training. The final model, named NYUS.2, was deployed along with two previous models as an R shiny-based application in the 2022-23 dormancy season, enabling large-scale and real-time simulation of grapevine freezing tolerance in North America for the first time.

3.
Hortic Res ; 9: uhac083, 2022.
Article in English | MEDLINE | ID: mdl-35611183

ABSTRACT

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

4.
Front Plant Sci ; 13: 891488, 2022.
Article in English | MEDLINE | ID: mdl-35599888

ABSTRACT

Bud freezing survival strategies have in common the presence of an ice barrier that impedes the propagation of lethally damaging ice from the stem into the internal structures of buds. Despite ice barriers' essential role in buds freezing stress survival, the nature of ice barriers in woody plants is not well understood. High-definition thermal recordings of Vaccinium macrocarpon Ait. buds explored the presence of an ice barrier at the bud base in September, January, and May. Light and confocal microscopy were used to evaluate the ice barrier region anatomy and cell wall composition related to their freezing tolerance. Buds had a temporal ice barrier at the bud base in September and January, although buds were only freezing tolerant in January. Lack of functionality of vascular tissues may contribute to the impedance of ice propagation. Pith tissue at the bud base had comparatively high levels of de-methyl-esterified homogalacturonan (HG), which may also block ice propagation. By May, the ice barrier was absent, xylogenesis had resumed, and de-methyl-esterified HG reached its lowest levels, translating into a loss of freezing tolerance. The structural components of the barrier had a constitutive nature, resulting in an asynchronous development of freezing tolerance between anatomical and metabolic adaptations.

5.
Physiol Plant ; 174(3): e13717, 2022 May.
Article in English | MEDLINE | ID: mdl-35592923

ABSTRACT

Woody perennials in temperate climates develop cold hardiness in the fall (acclimation) and lose cold hardiness in the spring (deacclimation) to survive freezing winter temperatures. Two main factors known to regulate deacclimation responses are dormancy status and temperature. However, the progression of deacclimation responses throughout the dormant period and across a range of temperatures is not well described. More detailed descriptions of dormancy status and temperature, as factors regulating deacclimation, are necessary to understand the timing and magnitude of freeze injury risks for woody perennials in temperate climates. In this study, we modeled deacclimation responses in cold-climate interspecific hybrid grapevine cultivars throughout the dormant period by integrating chill accumulation and temperature through the concept of deacclimation potential. We evaluated deacclimation and budbreak under multiple temperature treatments and chill unit accumulation levels using differential thermal analysis (DTA) and bud forcing assays. Deacclimation responses increased continuously following logistic trends for both increasing chill unit accumulation and increasing temperature. There are optimal temperatures where deacclimation rates increased but changes in deacclimation rates diminished below and above these temperatures. The cumulative chill unit range where deacclimation potential increased overlapped with the transition from endo- to ecodormancy. Therefore, deacclimation potential could provide a quantitative method for describing dormancy transitions that do not rely on the visual evaluation of budbreak. This information provides a more detailed understanding of when and how deacclimation contributes to increased risks by freezing injury. In addition, our descriptions could inform improvements to models predicting cold hardiness, dormancy transitions, and spring phenology.


Subject(s)
Acclimatization , Cold Temperature , Vitis , Freezing , Kinetics , Seasons , Vitis/physiology
6.
Int J Fruit Sci ; 22(1): 121-132, 2022.
Article in English | MEDLINE | ID: mdl-38107060

ABSTRACT

Cultivar contamination is a common issue in commercial cranberry production. Unknown or unwanted cranberry genotypes are found in commercial cranberry beds that are intended to be a single uniform genotype. Identification of contamination and the impacts of contamination remain crucial issues to the cranberry industry to maintain long-term high productivity. To address this issue, tissue samples were taken from the former commercial beds of the new Wisconsin Cranberry Research Station (WCRS) for genetic fingerprinting analysis. The goals of this collection were to analyze the ten beds for genetic uniformity to determine if any should be maintained or replaced, and to assess the accuracy of visual perception of genetic contamination in the field. A total of 288 DNA samples were collected in the ten cranberry beds, and the 'Stevens' cultivar represented 180 samples, or 69% of the 261 samples expected to be 'Stevens'. Therefore, genotype contamination in the 'Stevens' beds was 31% overall. Overall, visual differentiation was accurate in distinguishing between genotypes and detecting large areas of contamination. A yield analysis was conducted along with the genotypic uniformity assessments, and a significant correlation was found between the 2017 yield of the beds and their level of genetic contamination. This study demonstrates the usefulness of genetic uniformity testing and mapping for cranberry bed management and renovation decision-making.

7.
PLoS One ; 16(5): e0250575, 2021.
Article in English | MEDLINE | ID: mdl-33970921

ABSTRACT

Wisconsin and Quebec are the world leading cranberry-producing regions. Cranberries are grown in acidic, naturally low-fertility sandy beds. Cranberry fertilization is guided by general soil and tissue nutrient tests in addition to yield target and vegetative biomass. However, other factors such as cultivar, location, and carbon and nutrient storage impact cranberry nutrition and yield. The objective of this study was to customize nutrient diagnosis and fertilizer recommendation at local scale and for next-year cranberry production after accounting for local factors and carbon and nutrient carryover effects. We collected 1768 observations from on-farm surveys and fertilizer trials in Quebec and Wisconsin to elaborate a machine learning model using minimum datasets. We tested carryover effects in a 5-year Quebec fertilizer experiment established on permanent plots. Micronutrients contributed more than macronutrients to variation in tissue compositions. Random Forest model related accurately current-year berry yield to location, cultivars, climatic indices, fertilization, and tissue and soil tests as features (classification accuracy of 0.83). Comparing compositions of defective and successful tissue compositions in the Euclidean space of tissue compositions, the general across-factor diagnosis differed from the local factor-specific diagnosis. Nutrient standards elaborated in one region could hardly be transposed to another and, within the same region, from one bed to another due to site-specific characteristics. Next-year yield and nutrient adjustment could be predicted accurately from current-year yield and tissue composition and other features, with R2 value of 0.73 in regression mode and classification accuracy of 0.85. Compositional and machine learning methods proved to be effective to customize nutrient diagnosis and predict site-specific measures for nutrient management of cranberry stands. This study emphasized the need to acquire large experimental and observational datasets to capture the numerous factor combinations impacting current and next-year cranberry yields at local scale.


Subject(s)
Biomass , Carbon/chemistry , Fertilizers/analysis , Micronutrients/analysis , Nutrients/analysis , Soil/chemistry , Vaccinium macrocarpon/growth & development , Agriculture , Canada , Farms , Nitrogen/chemistry , Quebec , United States , Wisconsin
8.
Physiol Plant ; 172(4): 2238-2250, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33982304

ABSTRACT

After a freezing event, it can be challenging to extrapolate levels of freezing damage to plant growth viability based on the presence or absence of symptoms in specific bud tissues. This study investigated the relationship between freezing damage in terminal buds during ecodormancy and their viability during the subsequent growing season. We identified the bud structure that best explained this relationship, and developed a model to explain the changes in bud cold hardiness. Vertical shoots (uprights) of Vaccinium macrocarpon Ait. were sampled in central Wisconsin during Spring of 2018 and 2019. Sets of uprights with terminal buds were subjected to controlled freezing tests, followed by either visual freeze damage evaluation or assessment of shoot viability by growth assays. We determined the Browning Lethal-Temperature50 (BLT50 ), as temperature for 50% damage (tissue browning) at each bud structure, and Growth Lethal-Temperature50 (GLT50 ) temperature where 50% reduction in growth viability occurred. Two models were constructed to explain: (1) bud structure damage and growth viability, and (2) GLT50 's seasonal changes, representing the cold hardiness variations, and environmental factors. The correlation between the BLT50 and GLT50 values was closest for the bud scales and bud axis, indicating the better correspondence between levels of freezing damage with the impact on the growth potential. In addition, the latter was also the most suitable candidate for modeling due to easier damage evaluation. The freezing stress damage of the bud axis explained comparatively best the resulting growth viability. Seasonal changes in GLT50 were best explained by temperature indices based on daily minimum and on maximum temperatures over 10-day periods. However, among the model components, daily maximum temperatures had the greatest influence on V. macrocarpon cold hardiness changes during ecodormancy.


Subject(s)
Vaccinium macrocarpon , Cold Temperature , Freezing , Seasons , Temperature
9.
Plant Methods ; 17(1): 41, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33849587

ABSTRACT

BACKGROUND: Investigating plant mechanisms to tolerate freezing temperatures is critical to developing crops with superior cold hardiness. However, the lack of imaging methods that allow the visualization of freezing events in complex plant tissues remains a key limitation. Magnetic resonance imaging (MRI) has been successfully used to study many different plant models, including the study of in vivo changes during freezing. However, despite its benefits and past successes, the use of MRI in plant sciences remains low, likely due to limited access, high costs, and associated engineering challenges, such as keeping samples frozen for cold hardiness studies. To address this latter need, a novel device for keeping plant specimens at freezing temperatures during MRI is described. RESULTS: The device consists of commercial and custom parts. All custom parts were 3D printed and made available as open source to increase accessibility to research groups who wish to reproduce or iterate on this work. Calibration tests documented that, upon temperature equilibration for a given experimental temperature, conditions between the circulating coolant bath and inside the device seated within the bore of the magnet varied by less than 0.1 °C. The device was tested on plant material by imaging buds from Vaccinium macrocarpon in a small animal MRI system, at four temperatures, 20 °C, - 7 °C, - 14 °C, and - 21 °C. Results were compared to those obtained by independent controlled freezing test (CFT) evaluations. Non-damaging freezing events in inner bud structures were detected from the imaging data collected using this device, phenomena that are undetectable using CFT. CONCLUSIONS: The use of this novel cooling and freezing device in conjunction with MRI facilitated the detection of freezing events in intact plant tissues through the observation of the presence and absence of water in liquid state. The device represents an important addition to plant imaging tools currently available to researchers. Furthermore, its open-source and customizable design ensures that it will be accessible to a wide range of researchers and applications.

10.
Tree Physiol ; 40(7): 841-855, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32163157

ABSTRACT

Plants' mechanisms for surviving freezing stresses are essential adaptations that allow their existence in environments with extreme winter temperatures. Although it is known that Vaccinium macrocarpon Ait. buds can acclimate in fall and survive very cold temperatures during the winter, the mechanism for survival of these buds is not known. The main objective of this study was to determine which of the two major mechanisms of freezing stress survival, namely, deep supercooling or freeze-induced dehydration, are employed by V. macrocarpon terminal buds. In the present study, no low-temperature exotherms (LTEs) were detected by differential thermal analysis. Furthermore, a gradual reduction of relative liquid water content in the inner portions of buds during magnetic resonance imaging (MRI) scans performed between 0 and -20 °C (where no damage was detected in controlled freezing tests (CFT)) indicates these buds may not deep supercool. The higher ice nucleation activity of outer bud scales and the appearance of large voids in this structure in early winter, in conjunction with the MRI observations, are evidence supportive of a freeze-induced dehydration process. In addition, the presence of tissue browning in acclimated buds as a result of freezing stress was only observed in CFT at temperatures below -20 °C, and this damage gradually increased as test temperatures decreased and at different rates depending on the bud structure. Ours is the first study to collect multiple lines of evidence to suggest that V. macrocarpon terminal buds survive long periods of freezing stress by freeze-induced dehydration. Our results provide a framework for future studies of cold hardiness dynamics for V. macrocarpon and other woody perennial species and for the screening of breeding populations for freezing stress tolerance traits.


Subject(s)
Vaccinium macrocarpon , Acclimatization , Cold Temperature , Freezing , Water
11.
PLoS One ; 14(9): e0222451, 2019.
Article in English | MEDLINE | ID: mdl-31553750

ABSTRACT

BACKGROUND: Cranberry (Vaccinium macrocarpon L.) fruit quality traits encompass many properties. Although visual appearance and fruit nutritional constitution have usually been the most important attributes, cranberry textural properties such as firmness have recently gained importance in the industry. Fruit firmness has become a quality standard due to the recent demand increase for sweetened and dried cranberries (SDC), which are currently the most profitable cranberry product. Traditionally, this trait has been measured by the cranberry industry using compression tests; however, it is poorly understood how fruit firmness is influenced by other characteristics. RESULTS: In this study, we developed a high-throughput computer-vision method to measure the internal structure of cranberry fruit, which may in turn influence cranberry fruit firmness. We measured the internal structure of 16 cranberry cultivars measured over a 40-day period, representing more than 3000 individual fruit evaluated for 10 different traits. The internal structure data paired with fruit firmness values at each evaluation period allowed us to explore the correlations between firmness and internal morphological characteristics. CONCLUSIONS: Our study highlights the potential use of internal structure and firmness data as a decision-making tool for cranberry processing, especially to determine optimal harvest times and ensure high quality fruit. In particular, this study introduces novel methods to define key parameters of cranberry fruit that have not been characterized in cranberry yet. This project will aid in the future evaluation of cranberry cultivars for in SDC production.


Subject(s)
Fruit/anatomy & histology , Vaccinium macrocarpon/anatomy & histology , Crop Production , Phenotype , Plant Breeding
12.
Funct Plant Biol ; 40(5): 507-515, 2013 May.
Article in English | MEDLINE | ID: mdl-32481127

ABSTRACT

The effect of groundcover management systems on root demography and distribution of newly planted avocado (Persea americana Mill) trees was examined using minirhizotron techniques. We evaluated three groundcover systems: (1) bare soil (BS), pre- and post-emergence herbicides; (2) vegetation strip (VS), post-emergence herbicide applied in a 1-m wide strip centred on the tree row plus a groundcover mixture seeded between tree rows; and (3) complete groundcover (GC), covering the entire surface of the plots. Root production was higher in the non-bearing year (2009-10) than in the bearing year (2010-11). Trees in the BS plots had more roots of bigger diameter in the top 30cm of soil and trees in VS and GC plots had more roots in the 30-60cm depth and of smaller diameter. Lifespan of spring-born roots were 61 and 59% greater than those born during autumn and summer, respectively and soil depth and root diameter were positively correlated with root longevity. Lifespan of thinner roots (<0.2mm) in the BS and VS plots were 49 and 33% greater than GC respectively. Avocado trees grown in contrasting condition compared with their native habitat show high morphological root plasticity, in response to resource and non-resource competition when grown in mixed stands.

SELECTION OF CITATIONS
SEARCH DETAIL
...