Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 57(1): 225-40, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22156038

ABSTRACT

We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from −0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Glioblastoma/diagnosis , Glioblastoma/pathology , Models, Biological , Animals , Brain/pathology , Brain Neoplasms/therapy , Cell Proliferation , Glioblastoma/therapy , Male , Rats , Rats, Inbred F344 , Treatment Outcome
2.
Phys Med Biol ; 53(16): 4355-68, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18660560

ABSTRACT

In some medical procedures, it is difficult or impossible to maintain a line of sight for a guidance system. For such applications, people have begun to use electromagnetic trackers. Before a localizer can be effectively used for an image-guided procedure, a characterization of the localizer is required. The purpose of this work is to perform a volumetric characterization of the fiducial localization error (FLE) in the working volume of the Aurora magnetic tracker by sampling the magnetic field using a tomographic grid. Since the Aurora magnetic tracker will be used for image-guided transorbital procedures we chose a working volume that was close to the average size of the human head. A Plexiglass grid phantom was constructed and used for the characterization of the Aurora magnetic tracker. A volumetric map of the magnetic space was performed by moving the flat Plexiglass phantom up in increments of 38.4 mm from 9.6 mm to 201.6 mm. The relative spatial and the random FLE were then calculated. Since the target of our endoscopic guidance is the orbital space behind the optic nerve, the maximum distance between the field generator and the sensor was calculated depending on the placement of the field generator from the skull. For the different field generator placements we found the average random FLE to be less than 0.06 mm for the 6D probe and 0.2 mm for the 5D probe. We also observed an average relative spatial FLE of less than 0.7 mm for the 6D probe and 1.3 mm for the 5D probe. We observed that the error increased as the distance between the field generator and the sensor increased. We also observed a minimum error occurring between 48 mm and 86 mm from the base of the tracker.


Subject(s)
Endoscopy/methods , Imaging, Three-Dimensional/instrumentation , Magnetics/instrumentation , Optic Nerve/anatomy & histology , Optic Nerve/surgery , Surgery, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...