Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1248898, 2023.
Article in English | MEDLINE | ID: mdl-37781702

ABSTRACT

Introduction: Dihydropyrimidine dehydrogenase (DPD), encoded by DPYD gene, is the rate-limiting enzyme responsible for fluoropyrimidine (FP) catabolism. DPYD gene variants seriously affect DPD activity and are well validated predictors of FP-associated toxicity. DPYD variants rs3918290, rs55886062, rs67376798, and rs75017182 are currently included in FP genetic-based dosing guidelines and are recommended for genotyping by the European Medicines Agency (EMA) before treatment initiation. In Greece, however, no data exist on DPYD genotyping. The aim of the present study was to analyze prevalence of DPYD rs3918290, rs55886062, rs67376798, rs75017182, and, additionally, rs1801160 variants, and assess their association with FP-induced toxicity in Greek cancer patients. Methods: Study group consisted of 313 FP-treated cancer patients. DPYD genotyping was conducted on QuantStudio ™ 12K Flex Real-Time PCR System (ThermoFisher Scientific) using the TaqMan® assays C__30633851_20 (rs3918290), C__11985548_10 (rs55886062), C__27530948_10 (rs67376798), C_104846637_10 (rs75017182) and C__11372171_10 (rs1801160). Results: Any grade toxicity (1-4) was recorded in 208 patients (66.5%). Out of them, 25 patients (12%) experienced grade 3-4 toxicity. DPYD EMA recommended variants were detected in 9 patients (2.9%), all experiencing toxicity (p = 0.031, 100% specificity). This frequency was found increased in grade 3-4 toxicity cases (12%, p = 0.004, 97.9% specificity). DPYD deficiency increased the odds of grade 3-4 toxicity (OR: 6.493, p = 0.014) and of grade 1-4 gastrointestinal (OR: 13.990, p = 0.014), neurological (OR: 4.134, p = 0.040) and nutrition/metabolism (OR: 4.821, p = 0.035) toxicities. FP dose intensity was significantly reduced in DPYD deficient patients (ß = -0.060, p <0.001). DPYD rs1801160 variant was not associated with FP-induced toxicity or dose intensity. Triple interaction of DPYD*TYMS*MTHFR was associated with grade 3-4 toxicity (OR: 3.725, p = 0.007). Conclusion: Our findings confirm the clinical validity of DPYD reduced function alleles as risk factors for development of FP-associated toxicity in the Greek population. Pre-treatment DPYD genotyping should be implemented in clinical practice and guide FP dosing. DPYD*gene interactions merit further investigation as to their potential to increase the prognostic value of DPYD genotyping and improve safety of FP-based chemotherapy.

2.
Front Pharmacol ; 14: 1244098, 2023.
Article in English | MEDLINE | ID: mdl-37841935

ABSTRACT

Direct Oral Anticoagulants (DOACs) have simplified the treatment of thromboembolic disease. In addition to their established anticoagulant effects, there are indications from clinical and preclinical studies that DOACs exhibit also non-anticoagulant actions, such as anti-inflammatory and anti-oxidant actions, advocating overall cardiovascular protection. In the present study, we provide a comprehensive overview of the existing knowledge on the pleiotropic effects of DOACs on endothelial cells (ECs) in vitro and their underlying mechanisms, while also identifying potential differences among DOACs. DOACs exhibit pleiotropic actions on ECs, such as anti-inflammatory, anti-atherosclerotic, and anti-fibrotic effects, as well as preservation of endothelial integrity. These effects appear to be mediated through inhibition of the proteinase-activated receptor signaling pathway. Furthermore, we discuss the potential differences among the four drugs in this class. Further research is needed to fully understand the pleiotropic effects of DOACs on ECs, their underlying mechanisms, as well as the heterogeneity between various DOACs. Such studies can pave the way for identifying biomarkers that can help personalize pharmacotherapy with this valuable class of drugs.

3.
Biomedicines ; 11(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37893006

ABSTRACT

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia worldwide and is characterized by a high risk of thromboembolism, ischemic stroke, and fatality. The precise molecular mechanisms of AF pathogenesis remain unclear. The purpose of this study was to use bioinformatics tools to identify novel key genes in AF, provide deeper insights into the molecular pathogenesis of AF, and uncover potential therapeutic targets. Four publicly available raw RNA-Seq datasets obtained through the ENA Browser, as well as proteomic analysis results, both derived from atrial tissues, were used in this analysis. Differential gene expression analysis was performed and cross-validated with proteomics results to identify common genes/proteins between them. A functional enrichment pathway analysis was performed. Cross-validation analysis revealed five differentially expressed genes, namely FGL2, IGFBP5, NNMT, PLA2G2A, and TNC, in patients with AF compared with those with sinus rhythm (SR). These genes play crucial roles in various cardiovascular functions and may be part of the molecular signature of AF. Furthermore, functional enrichment analysis revealed several pathways related to the extracellular matrix, inflammation, and structural remodeling. This study highlighted five key genes that constitute promising candidates for further experimental exploration as biomarkers as well as therapeutic targets for AF.

4.
Pharmaceutics ; 15(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37765152

ABSTRACT

Therapeutic drug monitoring (TDM) is the clinical practice of measuring drug concentrations. TDM can be used to determine treatment efficacy and to prevent the occurrence or reduce the risk of drug-induced side effects, being, thus, a tool of personalized medicine. Drugs for which TDM is applied should have a narrow therapeutic range and exhibit both significant pharmacokinetic variability and a predefined target concentration range. The aim of our study was to assess the current status of TDM in Greek public hospitals and estimate its progress over the last 20 years. All Greek public hospitals were contacted to provide data and details on the clinical uptake of TDM in Greece for the years 2003 and 2021 through a structured questionnaire. Data from 113 out of 132 Greek hospitals were collected in 2003, whereas for 2021, we have collected data from 98 out of 122 hospitals. Among these, in 2003 and 2021, 64 and 51 hospitals, respectively, performed TDM. Antiepileptics and antibiotics were the most common drug categories monitored in both years. The total number of drug measurement assays decreased from 2003 to 2021 (153,313 ± 7794 vs. 90,065 ± 5698; p = 0.043). In direct comparisons between hospitals where TDM was performed both in 2003 and 2021 (n = 35), the mean number of measurements was found to decrease for most drugs, including carbamazepine (198.8 ± 46.6 vs. 46.6 ± 10.1, p < 0.001), phenytoin (253.6 ± 59 vs. 120 ± 34.3; p = 0.001), amikacin (147.3 ± 65.2 vs. 91.1 ± 71.4; p = 0.033), digoxin (783.2 ± 226.70 vs. 165.9 ± 28.9; p < 0.001), and theophylline (71.5 ± 28.7 vs. 11.9 ± 6.4; p = 0.004). Only for vancomycin, a significant increase in measurements was recorded (206.1 ± 96.1 vs. 789.1 ± 282.8; p = 0.012). In conclusion, our findings show that TDM clinical implementation is losing ground in Greek hospitals. Efforts and initiatives to reverse this trend are urgently needed.

5.
Front Cardiovasc Med ; 10: 1115623, 2023.
Article in English | MEDLINE | ID: mdl-36860278

ABSTRACT

Introduction: Heart failure (HF) is a complex clinical syndrome leading to high morbidity. In this study, we aimed to identify the gene expression and protein signature of HF main causes, namely dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM). Methods: Omics data were accessed through GEO repository for transcriptomic and PRIDE repository for proteomic datasets. Sets of differentially expressed genes and proteins comprising DCM (DiSig) and ICM (IsSig) signatures were analyzed by a multilayered bioinformatics approach. Enrichment analysis via the Gene Ontology was performed through the Metascape platform to explore biological pathways. Protein-protein interaction networks were analyzed via STRING db and Network Analyst. Results: Intersection of transcriptomic and proteomic analysis showed 10 differentially expressed genes/proteins in DiSig (AEBP1, CA3, HBA2, HBB, HSPA2, MYH6, SERPINA3, SOD3, THBS4, UCHL1) and 15 differentially expressed genes/proteins in IsSig (AEBP1, APOA1, BGN, CA3, CFH, COL14A1, HBA2, HBB, HSPA2, LTBP2, LUM, MFAP4, SOD3, THBS4, UCHL1). Common and distinct biological pathways between DiSig and IsSig were retrieved, allowing for their molecular characterization. Extracellular matrix organization, cellular response to stress and transforming growth factor-beta were common between two subphenotypes. Muscle tissue development was dysregulated solely in DiSig, while immune cells activation and migration in IsSig. Discussion: Our bioinformatics approach sheds light on the molecular background of HF etiopathology showing molecular similarities as well as distinct expression differences between DCM and ICM. DiSig and IsSig encompass an array of "cross-validated" genes at both transcriptomic and proteomic level, which can serve as novel pharmacological targets and possible diagnostic biomarkers.

6.
Drug Metab Pers Ther ; 37(4): 347-352, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36169244

ABSTRACT

OBJECTIVES: Pharmacogenomics can explain some of the heterogeneity of sulfonylurea (SU)-related hypoglycemia risk. Recently, a role of OATP1B1, encoded by SLCO1B1 gene, on SU liver transport prior of metabolism has been uncovered. The aim of the present study was to explore the potential association of SLCO1B1 c.521T>C polymorphism, leading to reduced OATP1B1 function, with SU-related hypoglycemia risk. METHODS: Study cohort consists of 176 type 2 diabetes patients treated with the SUs glimepiride or gliclazide. 92 patients reported SU-related hypoglycemia, while 84 patients had never experienced a hypoglycemic event. Patients were previously genotyped for CYP2C9 *2 and *3 variant alleles that lead to decreased enzyme activity of the SU metabolizing enzyme CYP2C9 and have been associated with increased SU-related hypoglycemia risk. SLCO1B1 c.521T>C polymorphism was genotyped by use of PCR-RFLP analysis. RESULTS: SLCO1B1 c.521TC genotype frequency was significantly lower in hypoglycemic cases than non-hypoglycemic controls (15.2% vs. 32.1%, p=0.008). In an adjusted model, c.521TC genotype significantly reduced the risk of hypoglycemia (OR 0.371; 95% C.I. 0.167-0.822; p=0.015). In CYP2C9 intermediate metabolizers (n=54) c.521TC genotype frequency was significantly decreased in cases compared to controls (3 out of 36 cases, 8.3% vs. 7 out of 18 controls, 38.9%, p=0.012). A similar albeit not significant difference of SLCO1B1 c.521TC genotype was present in CYP2C9 extensive metabolizers (n=120) (18.2% in cases vs. 30.8% in controls, p=0.113). CONCLUSIONS: We have found a protective effect of SLCO1B1 c.521C variant on SU-related hypoglycemia risk both independently and in interaction with CYP2C9 phenotypes. Our results suggest a possible linkage of SLCO1B1 c.521T>C polymorphism with variants in other genes impairing OATPs expressed in pancreatic islets that could interfere with SU tissue distribution.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Polymorphism, Genetic/genetics , Liver-Specific Organic Anion Transporter 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...