Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Hum Genet ; 141(1): 127-146, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34859289

ABSTRACT

Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , Megakaryocytes/physiology , Mitochondria/genetics , Platelet Activation , Polymorphism, Single Nucleotide , Aged , Cell Proliferation , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Nucleotides/metabolism , Phenotype
2.
Br J Cancer ; 112(2): 313-8, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25412235

ABSTRACT

BACKGROUND: Telomeres are TTAGGG tandem repeats capping chromosomal ends and partially controlled by the telomerase enzyme. The EGFR pathway putatively regulates telomerase function, prompting an investigation of telomere length (TL) and its association with anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (mCRC). METHODS: Colorectal cancer cell lines were treated with multiple drugs and sensitivity determined. Clinical information was gathered from 75 patients who had received anti-EGFR drugs. Telomere length was measured using a validated qRT-PCR technique. RESULTS: In CRC cell lines, TL independently predicted cetuximab sensitivity. Cells with shorter TL had growth inhibition of 18.6±3.41% as compared with 41.39±8.58% in longer TL (P=0.02). These in vitro findings were validated clinically, in a robust multivariate model. Among patients with KRas WT tumours, those with longer TL had a superior median progression-free survival (PFS) of 24.9 weeks than those with shorter TL; median 11.1 weeks, HR 0.31; P=0.048. CONCLUSION: Telomere length could be a potential unique biomarker predictive of clinical benefit (PFS) of mCRC patients treated with anti-EGFR therapy. This is the novel demonstration of a complex hitherto undescribed interaction, placing anti-EGFR therapy, EGFR pathway, and the telomerase complex within a clinical context.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Liver Neoplasms/drug therapy , Telomere Shortening , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cetuximab , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease-Free Survival , Drug Resistance, Neoplasm , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/secondary , Male , Middle Aged , Molecular Targeted Therapy , Panitumumab , Telomere
3.
Age (Dordr) ; 35(4): 1367-76, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22555621

ABSTRACT

Experimental mild heat shock is widely known as an intervention that results in extended longevity in various models along the evolutionary lineage. Heat shock proteins (HSPs) are highly upregulated immediately after a heat shock. The elevation in HSP levels was shown to inhibit stress-mediated cell death, and recent experiments indicate a highly versatile role for these proteins as inhibitors of programmed cell death. In this study, we examined common genetic variations in 31 genes encoding all members of the HSP70, small HSP, and heat shock factor (HSF) families for their association with all-cause mortality. Our discovery cohort was the Rotterdam study (RS1) containing 5,974 participants aged 55 years and older (3,174 deaths). We assessed 4,430 single nucleotide polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. After adjusting for multiple testing by permutation analysis, three SNPs showed evidence for association with all-cause mortality in RS1. These findings were followed in eight independent population-based cohorts, leading to a total of 25,007 participants (8,444 deaths). In the replication phase, only HSF2 (rs1416733) remained significantly associated with all-cause mortality. Rs1416733 is a known cis-eQTL for HSF2. Our findings suggest a role of HSF2 in all-cause mortality.


Subject(s)
Aging/metabolism , Forecasting , Heat-Shock Proteins/genetics , Longevity/genetics , Aged, 80 and over , Aging/genetics , Cause of Death/trends , Genotype , Heat-Shock Proteins/metabolism , Humans , Promoter Regions, Genetic , Retrospective Studies , Transcription, Genetic , United States/epidemiology
4.
Hum Genet ; 131(2): 251-63, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21789512

ABSTRACT

Modern day Latin America resulted from the encounter of Europeans with the indigenous peoples of the Americas in 1492, followed by waves of migration from Europe and Africa. As a result, the genomic structure of present day Latin Americans was determined both by the genetic structure of the founding populations and the numbers of migrants from these different populations. Here, we analyzed DNA collected from two well-established communities in Colorado (33 unrelated individuals) and Ecuador (20 unrelated individuals) with a measurable prevalence of the BRCA1 c.185delAG and the GHR c.E180 mutations, respectively, using Affymetrix Genome-wide Human SNP 6.0 arrays to identify their ancestry. These mutations are thought to have been brought to these communities by Sephardic Jewish progenitors. Principal component analysis and clustering methods were employed to determine the genome-wide patterns of continental ancestry within both populations using single nucleotide polymorphisms, complemented by determination of Y-chromosomal and mitochondrial DNA haplotypes. When examining the presumed European component of these two communities, we demonstrate enrichment for Sephardic Jewish ancestry not only for these mutations, but also for other segments as well. Although comparison of both groups to a reference Hispanic/Latino population of Mexicans demonstrated proximity and similarity to other modern day communities derived from a European and Native American two-way admixture, identity-by-descent and Y-chromosome mapping demonstrated signatures of Sephardim in both communities. These findings are consistent with historical accounts of Jewish migration from the realms that comprise modern Spain and Portugal during the Age of Discovery. More importantly, they provide a rationale for the occurrence of mutations typically associated with the Jewish Diaspora in Latin American communities.


Subject(s)
DNA, Mitochondrial , Hispanic or Latino/genetics , Jews/genetics , Polymorphism, Single Nucleotide , Black People/genetics , Chromosomes, Human, Y , Emigration and Immigration , Female , Haplotypes , Humans , Male , Mutation , Phylogeography , White People/genetics
5.
Cytogenet Genome Res ; 117(1-4): 327-37, 2007.
Article in English | MEDLINE | ID: mdl-17675875

ABSTRACT

Three single cross populations were generated in order to analyze factors affecting the ability to detect true linkage with minimum false positive or false negative associations, and to detect associations between markers and quantitative traits. The three populations are: (1) a broiler x broiler cross of a single sire and 34 dams, resulting in 266 progeny; (2) a broiler x broiler cross of a single sire and 41 dams resulting in 360 progeny; and (3) a broiler x layer cross of a single sire with 56 dams resulting in 1180 progeny. Based on these three resource populations we show that: a) gradient selective genotyping was more effective than the random selective genotyping; b) selective genotyping was significant at a selected proportion less than 62% of the cumulative truncation point; c) as few as 10% of selected individuals (5% of each of the two tails) were sufficient to show significant association between markers and phenotypes; d) a gradient slices approach was more powerful than using replicates of the extreme groups; and e) in resource populations resulting from crosses between lines of different backgrounds, most of the microsatellite markers used are polymorphic. We also used simulation to test factors affecting power to detect true associations between markers and traits that are hard to detect in experimental resource populations. Using defined populations in the simulation, we concluded that the following guidelines provide reliable detection of linked QTLs: 1) the resource population size should be larger than 100; 2) a QTL effect larger than 0.4 SD is detectable with a reasonable number of markers (>100) and resource population size (>200 subjects); 3) the DNA pool from each tail of the trait distribution should contain at least 10% of the resource family; 4) each of the two DNA pools should include more than 35 individuals. Some of these guidelines that were deduced from the simulation analysis have been confirmed in the experimental part of this study.


Subject(s)
Animal Husbandry , Chickens/genetics , Quantitative Trait Loci/genetics , Animals , Computer Simulation , DNA/genetics , Female , Genetic Markers , Genotype , Male , Microsatellite Repeats
6.
Neurology ; 67(12): 2170-5, 2006 Dec 26.
Article in English | MEDLINE | ID: mdl-17190939

ABSTRACT

OBJECTIVE: To test whether cholesterol ester transfer protein (CETP) genotype (VV homozygosity for I405V) is associated with preservation of cognitive function in addition to its association with exceptional longevity. METHODS: We studied Ashkenazi Jews with exceptional longevity (n = 158; age 99.2 +/- 0.3 years) for the associations of CETP VV genotype and lipoprotein phenotype, using the Mini-Mental State Examination (MMSE). To confirm the role of CETP in a younger cohort, we studied subjects from the Einstein Aging Study (EAS) for associations between CETP VV and cognitive impairment. RESULTS: Subjects with MMSE > 25 were twice as likely to have the CETP VV genotype (29% vs 14%, p = 0.02), and those with the VV genotype were more likely (61% vs 30%, p = 0.02) to have MMSE > 25. Subjects with the VV genotype had lower levels of CETP (1.73 +/- 0.11 vs 2.12 +/- 0.10 mug/mL, p = 0.01), higher high-density lipoprotein (HDL) levels (p = 0.02), and larger lipoprotein particles (p = 0.03). In the EAS cohort, an approximately fivefold increase in the VV genotype (21% vs 4%, p = 0.02), higher HDL levels, and larger lipoprotein particle sizes were associated with less dementia and improved memory. CONCLUSIONS: Using two independent cohorts, we implicate the longevity CETP gene as a modulator of age-related cognitive function. A specific CETP genotype is associated with lower CETP levels and a favorable lipoprotein profile. It has not been determined whether modulation of this gene prevents age-related decline or AD.


Subject(s)
Cholesterol Ester Transfer Proteins/genetics , Cognition Disorders/epidemiology , Cognition Disorders/genetics , Cognition , Jews/genetics , Longevity/genetics , Risk Assessment/methods , Age Distribution , Age Factors , Aged, 80 and over , Female , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genotype , Humans , Jews/statistics & numerical data , Male , New York/epidemiology , Polymorphism, Single Nucleotide/genetics , Prevalence , Risk Factors
7.
Anim Genet ; 37(5): 482-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16978178

ABSTRACT

A method proposed herein allows simultaneous selection for several production traits, taking into consideration their marginal economic values (i.e. the economic value of a trait's additional unit). This economic index-marker assisted selection (EI-MAS) method is based on the calculation of the predicted economic breeding value (BV), using information on DNA markers that have previously been found to be associated with relevant quantitative trait loci. Based on the proposed method, results with real birds showed that sire progeny performance was significantly correlated with expected performance (r = 0.61-0.76; P = 0.03-0.01). Simulation analysis using a computer program written specifically for this purpose suggested that the relative advantage of EI-MAS would be large for traits with low heritability values. As expected, the response to EI-MAS was higher when the map distance between the marker and the quantitative trait gene was small, and vice versa. A large number of distantly located markers, spread 10 cM apart, yielded higher response to selection than a small number of closely located markers spread 3 cM apart. Additionally, the response to EI-MAS was higher when a large number (ca.150) of progeny was used for the prediction equation.


Subject(s)
Animal Husbandry/economics , Chickens/genetics , Quantitative Trait Loci , Animal Husbandry/methods , Animals , Breeding/economics , Breeding/methods , Chickens/growth & development , Chromosome Mapping , Computer Simulation , Genetic Markers , Microsatellite Repeats
8.
Anim Genet ; 37(4): 352-8, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16879345

ABSTRACT

Associations between microsatellite markers and traits related to growth and fatness were investigated using resource broiler population. A sire-line x dam-line F1 male was backcrossed to 12 dam-line females to produce 24 sires and 47 dams of the backcross 1 (BC1) generation. These 71 parents were genotyped with 76 microsatellite markers. Following full-sib mating among the parents, 234 BC1-F2 progeny were phenotyped for five growth traits (body weight at 49 days from hatch, wog weight, front half weight, breast weight and tender weight) and abdominal fat weight. Maximum likelihood analysis was used to estimate the marker effects and to evaluate their statistical significance. Individual marker-trait analysis revealed 44 significant associations out of the 456 marker-trait combinations. Correction for multiple comparisons by controlling the false discovery rate (FDR) resulted in 12 significant associations at FDR = 10% with markers on chromosomes 1, 2, 5 and 13. Seventy-five percent of the 44 significant associations displayed no dependence on either hatch or gender; half of the remaining associations displayed dependence of the quantitative trait loci (QTL) effect on hatch x gender interaction. Thus, the analysed traits in this study may be dependent on external factors.


Subject(s)
Abdominal Fat/anatomy & histology , Chickens/growth & development , Chickens/genetics , Quantitative Trait Loci , Animals , Body Fat Distribution/statistics & numerical data , Chickens/anatomy & histology , Female , Genetic Markers , Genotype , Likelihood Functions , Male , Microsatellite Repeats , Sex Factors
9.
Anim Genet ; 33(2): 132-9, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12047226

ABSTRACT

Genotypes for 24 microsatellite markers, dispersed across the chicken genome, were used to predict progeny performance and heterosis for egg production (number and mass) in 'layers' (egg-type chickens). These markers were used to evaluate genetic distance between each of 39 sires sampled from two-layer male-lines; Rhode Island Red (RIR) and White egg Leghorn (Leghorn), and a DNA pool of 30 randomly sampled females from a Brown-egg female line (Silver). Each sire was analysed for egg production across months in the laying period and cumulatively in each of three subperiods; onset (2 month), mid (9 month) and late (1 month). The average Reynolds' genetic distance between Leghorn sires and the Silver female line (theta;=0.6) was significantly higher than that between RIR sires and the Silver female line (theta;=0.5). Neither performance nor heterosis values in the RIR sire's daughters were associated with genetic distance values between sires and the Silver female line. On the other hand, performance as well as heterosis values of Leghorn's daughters were positively associated with genetic distance. This association was particularly evident in the mid-subperiod. If 25% of the most genetically distant Leghorn sires from the Silver female line had been selected in a single generation on the basis of DNA markers information only, average egg production of the crossbred daughters would have been improved by about nine eggs (3%). In principle, further improvement is possible if selection to increase genetic distance between the parental lines is carried on.


Subject(s)
Breeding , Chickens/genetics , Eggs , Hybrid Vigor , Animals , Chromosome Mapping , Female , Genetic Markers , Male , Microsatellite Repeats
10.
Horm Metab Res ; 34(11-12): 622-8, 2002.
Article in English | MEDLINE | ID: mdl-12660871

ABSTRACT

Abdominal obesity has been linked to the development of insulin resistance and Type 2 diabetes mellitus (DM2). By surgical removal of visceral fat (VF) in a variety of rodent models, we prevented insulin resistance and glucose intolerance, establishing a cause-effect relationship between VF and the metabolic syndrome. To characterize the biological differences between visceral and peripheral fat depots, we obtained perirenal visceral (VF) and subcutaneous (SC) fat from 5 young rats. We extracted mRNA from the fat tissue and performed gene array hybridization using Affymetrix technology with a platform containing 9 000 genes. Out of the 1 660 genes that were expressed in fat tissue, 297 (17.9 %) genes show a two-fold or higher difference in their expression between the two tissues. We present the 20 genes whose expression is higher in VF fat (by 3 - 7 fold) and the 20 genes whose expression is higher in SC fat (by 3 - 150 fold), many of which are predominantly involved in glucose homeostasis, insulin action, and lipid metabolism. We confirmed the findings of gene array expression and quantified the changes in expression in VF of genes involved in insulin resistance (PPARgamma leptin) and its syndrome (angiotensinogen and plasminogen activating inhibitor-1, PAI-1) by real-time PCR (qRT-PCR) technology. Finally, we demonstrated increased expression of resistin in VF by around 12-fold and adiponectin by around 4-fold, peptides that were not part of the gene expression platform. These results indicate that visceral fat and subcutaneous fat are biologically distinct.


Subject(s)
Adipocytes/physiology , Adipose Tissue/physiology , Gene Expression Profiling , Subcutaneous Tissue/physiology , Viscera/physiology , Adipose Tissue/cytology , Animals , Gene Expression Profiling/standards , Genetic Markers , Homeostasis/genetics , Insulin/metabolism , Lipid Mobilization/genetics , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...