Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 55(12): 3862-81, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26854878

ABSTRACT

The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

3.
Lab Chip ; 15(8): 1934-41, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25738695

ABSTRACT

Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.


Subject(s)
Lab-On-A-Chip Devices , Printing, Three-Dimensional , Animals , Automation , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Membranes, Artificial , Molecular Imaging
4.
Lab Chip ; 14(7): 1294-301, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24510161

ABSTRACT

The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
5.
Lab Chip ; 13(11): 2036-2039, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23584282

ABSTRACT

Standardized, affordable, user-friendly world-to-chip interfaces represent one of the major barriers to the adoption of microfluidics. We present a connector system for plug-and-play interfacing of microfluidic devices to multiple input and output lines. The male connectors are based on existing standardized housings from electronics that are inexpensive and widely available. The female connectors are fabricated using familiar replica molding techniques that can easily be adopted by microfluidic developers.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Equipment Design , Lab-On-A-Chip Devices/standards , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...