Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 114(1): 587-591, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27634738

ABSTRACT

The up-to-date concentration of polycyclic aromatic hydrocarbons (PAHs) in sediment materials of Victoria Harbour was investigated so as to evaluate the pollution potential associated with the reclamation projects in Hong Kong. A total of 100 sediment samples were collected at 20 locations. Except the control point in reservoir, the PAHs concentrations were detectable levels all sites (131-628.3ng/g, dw) and such values were higher than Dutch Target and Intervention Values (the New Dutch standard in 2016). The PAHs concentration indicating that construction waste and wastewater discharges were the main pollutant sources. Results of correlation in single cell gel electrophoresis assay (comet assay) studies also revealed that the PAHs concentration was highly correlated (<0.01) with DNA migration (i.e. the length of tail moment of fish cells) in 5mg/ml of PAHs. The above observation indicates that the PAHs present in the sediment may substantially effect the marine ecosystem. Although the dredged sediment can be a useful sea-filling material for land reclamation; however, the continuing leaching of PAHs and its impact on the aquatic environment need to be studied further.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Biological Availability , Comet Assay , Construction Industry , DNA Damage , Fishes/genetics , Geologic Sediments/analysis , Hong Kong , Polycyclic Aromatic Hydrocarbons/toxicity , Wastewater/chemistry , Water Pollutants, Chemical/toxicity
2.
Environ Sci Pollut Res Int ; 24(10): 9079-9088, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27164879

ABSTRACT

The objective of this study is to evaluate the current status of heavy metal concentrations in constructed wetland, Shaoguan (Guangdong, China). Sediments, three wetland plants (Typha latifolia, Phragmites australis, and Cyperus malaccensis), and six freshwater fish species [Carassius auratus (Goldfish), Cirrhinus molitorella (Mud carp), Ctenopharyngodon idellus (Grass carp), Cyprinus carpio (Wild common carp), Nicholsicypris normalis (Mandarin fish), Sarcocheilichthys kiangsiensis (Minnows)] in a constructed wetland in Shaoguan were collected and analyzed for their heavy metal compositions. Levels of Pb, Zn, Cu, and Cd in sediments exceeded approximately 532, 285, 11, and 66 times of the Dutch Intervention value. From the current study, the concentrations of Pb and Zn in three plants were generally high, especially in root tissues. For fish, concentrations of all studied metals in whole body of N. mormalis were the highest among all the fishes investigated (Pb 113.4 mg/kg, dw; Zn 183.1 mg/kg, dw; Cu 19.41 mg/kg, dw; 0.846 mg/kg, dw). Heavy metal accumulation in different ecological compartments was analyzed by principle component analysis (PCA), and there is one majority of grouped heavy metals concentration as similar in composition of ecological compartment, with the Cd concentration quite dissimilar. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation by constructed wetland is still in early stage and needs more attention in gene manipulation area.


Subject(s)
Wetlands , Zinc , Animals , Carps , China , Environmental Monitoring , Lead , Metals, Heavy , Water Pollutants, Chemical
3.
Mar Pollut Bull ; 94(1-2): 318-22, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25697818

ABSTRACT

The objective of the study is to evaluate the effect of fish cultivation on water quality in fish culture zone (FCZ) and analysed by Principle Component Analysis (PCA). 120 surface water samples were collected from Hong Kong Waters (60 samples in Victoria Harbour and another 60 in Ma Wan FCZ). Significant difference was found in dissolved oxygen (MW: 59.6%; VH: 81.3%), and Escherichia coli (MW: 465 CFU/100 ml; VH: 162.5 CFU/100 ml). Three principle components are responsible for water quality variations in the studying sites. The first component included E. coli (0.625) and dissolved oxygen (0.701). The second included E. coli (0.387) and ammonical-nitrogen (0.571). The third included E. coli (0.194) and ammonical-nitrogen (0.287). This framework provides information to assess the relative contribution of eco-aquaculture to nutrient loads and the subsequent risk of eutrophication. To conclude, a rigorous monitoring of water quality is necessary to assess point and nonpoint source pollution. Besides, appropriate remediation techniques should be used to combat water pollution and achieve sustainability.


Subject(s)
Aquaculture , Environmental Monitoring , Water Pollution/statistics & numerical data , Animals , Escherichia coli/growth & development , Eutrophication , Hong Kong , Nitrogen/analysis , Oxygen/analysis , Water Pollution/analysis , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...