Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38202522

ABSTRACT

Liver-targeting nanoparticles have emerged as a promising platform for the induction of immune tolerance by taking advantage of the liver's unique tolerogenic properties and nanoparticles' physicochemical flexibility. Such an approach provides a versatile solution to the treatment of a diversity of immunologic diseases. In this review, we begin by assessing the design parameters integral to cell-specific targeting and the tolerogenic induction of nanoplatforms engineered to target the four critical immunogenic hepatic cells, including liver sinusoidal epithelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), and hepatocytes. We also include an overview of multiple therapeutic strategies in which nanoparticles are being studied to treat many allergies and autoimmune disorders. Finally, we explore the challenges of using nanoparticles in this field while highlighting future avenues to expand the therapeutic utility of liver-targeting nanoparticles in autoimmune processes.

2.
Small Methods ; 6(2): e2101051, 2022 02.
Article in English | MEDLINE | ID: mdl-35174985

ABSTRACT

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti3 C2 Tx nanosheet-immersed polyurethane sponge. This electrode engineering strategy enables the smooth transition between sponge deformation and MXene interlamellar displacement, giving rise to high sensitivity (1.52 kPa-1 ) and good linearity (r2  = 0.9985) in a wide sensing range (0-100 kPa) with a response time of 226 ms for pressure detection. In addition, both the experimental characterization and finite element simulation confirm that the hierarchical structures modulated by pore size, plasma bias, and MXene concentration play a crucial role in improving the sensing performance. Furthermore, the as-developed flexible pressure sensor is demonstrated to measure human radial pulse, detect finger tapping, foot stomping, and perform object identification, revealing great feasibility in wearable biomonitoring and health assessment.


Subject(s)
Equipment Design/methods , Heart Rate Determination/instrumentation , Wearable Electronic Devices , Finite Element Analysis , Humans , Microtechnology , Polyurethanes/chemistry , Titanium/chemistry , Touch
3.
ACS Appl Mater Interfaces ; 14(1): 1850-1860, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34859667

ABSTRACT

Carbon nanomaterials have proven their wide applicability in molecular separation and water purification techniques. Here, an unzipped carbon nanotubes (CNT) embedded graphene oxide (GO) membrane (uCNTm) is reported. The multiwalled CNTs were longitudinally cut into multilayer graphene oxide nanoribbons by a modified Hummer method. To investigate the varying effects of different bandwidths of unzipped CNTs on their properties, four uCNTms were prepared by a vacuum-assisted filtration process. Unzipped-CNTs with different bandwidths were made by unzipping multiwalled CNTs with outer diameters of 0-10, 10-20, 20-30, and 30-50 nm and named uCNTm-1, uCNTm-2, uCNTm-3, and uCNTm-4, respectively. The uCNTms exhibited good stability in different pH solutions, and the water permeability of the composite membranes showed an increasing trend with the increase of the inserted uCNTm's bandwidth up to 107 L·m-2·h-1·bar-1, which was more than 10 times greater than that of pure GO membranes. The composite membranes showed decent dye screening performance with the rejection rate of methylene blue and rhodamine B both greater than 99%.

4.
ACS Appl Mater Interfaces ; 13(44): 52850-52860, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34714039

ABSTRACT

NiWO4 microflowers with a large surface area up to 79.77 m2·g-1 are synthesized in situ via a facile coprecipitation method. The NiWO4 microflowers are further decorated with multi-walled carbon nanotubes (MWCNTs) and assembled to form composites for NH3 detection. The as-fabricated composite exhibits an excellent NH3 sensing response/recovery time (53 s/177 s) at a temperature of 460 °C, which is a 10-fold enhancement compared to that of pristine NiWO4. It also demonstrates a low detection limit of 50 ppm; the improved sensing performance is attributed to the porous structure of the material, the large specific surface area, and the p-n heterojunction formed between the MWNTs and NiWO4. The gas sensitivity of the sensor based on daisy-like NiWO4/MWCNTs shows that the sensor based on 10 mol % (MWN10) has the best gas sensitivity, with a sensitivity of 13.07 to 50 ppm NH3 at room temperature and a detection lower limit of 20 ppm. NH3, CO2, NO2, SO2, CO, and CH4 are used as typical target gases to construct the NiWO4/MWCNTs gas-sensitive material and study the research method combining density functional theory calculations and experiments. By calculating the morphology and structure of the gas-sensitive material NiWO4(110), the MWCNT load samples, the vacancy defects, and the influence law and internal mechanism of gas sensitivity were described.

5.
Cell Tissue Res ; 386(1): 47-57, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34302219

ABSTRACT

The present study reports the feasibility and successful production of rabbit cG-CAOMECS, designed to reconstruct corneal epithelium of patients with bilateral limbal stem cell deficiency. To produce a safe, chemically defined and FDA compliant cG-CAOMECS, oral mucosal epithelial cells were isolated from a biopsy of rabbit buccal tissue and seeded on a cGMP-certified cell culture surface coated with GMP-grade extracellular matrix. A newly designed clinical-grade medium (KaFa™ medium) was utilized to carry out cell expansion. Detachment and harvesting of the produced cell sheet was accomplished using collagenase treatment. Live cell imaging and morphological analysis techniques were used to examine cell growth. Cells attached onto the surface and self-assembled into colony-forming units (CFUs). Microscopic examination showed that CFUs formed during the first 5 days, and basal monolayer cell sheet formed in less than 10 days. Cells expanded to form a multilayered epithelial cell sheet that was harvested after 17-19 days in culture. Immunostaining and Western blot analyses showed that deltaNp63 was expressed in the basal cells and K3/K12 was expressed in the apical cells, indicating the presence of corneal epithelial-like cells in the produced cell sheet. Adhesion molecules, E-cadherin, beta-catenin, and Cnx43 were also expressed and exhibited the epithelial integrity of the cell sheet. The expression of integrin-beta1 and beta4 confirmed that the collagenase treatment used for detaching and harvesting the cell sheet did not have adverse effects. Our results showed that the utilization of clinical-grade and FDA-approved reagents successfully supported the production of cG-CAMECS.


Subject(s)
Epithelial Cells/metabolism , Mouth Mucosa/metabolism , Animals , Cells, Cultured , Epithelial Cells/cytology , Humans , Mouth Mucosa/cytology , Rabbits
6.
Trends Biotechnol ; 39(10): 1078-1092, 2021 10.
Article in English | MEDLINE | ID: mdl-33551177

ABSTRACT

Arterial pulse waves are regarded as vital diagnostic tools in the assessment of cardiovascular disease (CVD). Because of their high sensitivity, rapid response time, wearability, and low cost, textile triboelectric nanogenerators (TENGs) are emerging as a compelling biotechnology for wearable pulse wave monitoring. We discuss sensing mechanisms for pulse-to-electricity conversion, analytical models for calculating cardiovascular parameters, and application scenarios for textile TENGs. We provide a prospective on the challenges that limit the wider application of this technology and suggest some future research directions. In the future, textile TENGs are expected to make an impact in the fields of wearable pulse wave monitoring and CVD diagnosis.


Subject(s)
Wearable Electronic Devices , Electricity , Monitoring, Physiologic , Textiles
7.
Biosens Bioelectron ; 171: 112714, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33068881

ABSTRACT

Biomedical sensors have been essential in improving healthcare outcomes over the past 30 years, though limited power source access and user wearability restraints have prevented them from taking a constant and active biomedical sensing role in our daily lives. Triboelectric nanogenerators (TENGs) have demonstrated exceptional capabilities and versatility in delivering self-powered and wear-optimized biomedical sensors, and are paving the way for a novel platform technology able to fully integrate into the developing 5G/Internet-of-Things ecosystem. This novel paradigm of TENG-based biomedical sensors aspires to provide ubiquitous and omnipresent real-time biomedical sensing for us all. In this review, we cover the remarkable developments in TENG-based biomedical sensing which have arisen in the last octennium, focusing on both in-body and on-body biomedical sensing solutions. We begin by covering TENG as biomedical sensors in the most relevant, mortality-associated clinical fields of pneumology and cardiology, as well as other organ-related biomedical sensing abilities including ambulation. We also include an overview of ambient biomedical sensing as a field of growing interest in occupational health monitoring. Finally, we explore TENGs as power sources for third party biomedical sensors in a number of fields, and conclude our review by focusing on the future perspectives of TENG biomedical sensors, highlighting key areas of attention to fully translate TENG-based biomedical sensors into clinically and commercially viable digital and wireless consumer and health products.


Subject(s)
Biosensing Techniques , Nanotechnology , Ecosystem , Electric Power Supplies
SELECTION OF CITATIONS
SEARCH DETAIL
...