Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 4843, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32179841

ABSTRACT

Quantum dot (QD) coupling in nanophotonics has been widely studied for various potential applications in quantum technologies. Micro-machining has also attracted substantial research interest due to its capacity to use miniature robotic tools to make precise controlled movements. In this work, we combine fluorescent QDs and magnetic nanoparticles (NPs) to realize multifunctional microrobotic structures and demonstrate the manipulation of a coupled single-photon source (SPS) in 3D space via an external magnetic field. By employing the low one photon absorption (LOPA) direct laser writing (DLW) technique, the fabrication of 2D and 3D magneto-photonic devices containing a single QD is performed on a hybrid material consisting of colloidal CdSe/CdS QDs, magnetite Fe3O4 NPs, and SU-8 photoresist. Two types of devices, contact-free and in-contact structures, are investigated to demonstrate their magnetic and photoradiative responses. The coupled SPS in the devices is driven by the external magnetic field to perform different movements in a 3D fluidic environment. The optical properties of the single QD in the devices are characterized.

2.
Nanoscale Adv ; 1(8): 3225-3231, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133591

ABSTRACT

Colloidal semiconductor quantum dots (QDs) are promising candidates for various applications in electronics and quantum optics. However, they are sensitive and vulnerable to the chemical environment due to their highly dynamic surface with a large portion of exposed atoms. Hence, oxidation and detrimental defects on the nanocrystal (NC) interface dramatically deteriorate their optical as well as electrical properties. In this study, a simple strategy is proposed not only to obtain good preservation of colloidal semiconductor QDs by using a protective polymer matrix but also to provide excellent accessibility to micro-fabrication by optical lithography. A high-quality QD-polymer nanocomposite with mono-dispersion of the NCs is synthesized by incorporating the colloidal CdSe/CdS NCs into an SU-8 photoresist. Our approach shows that the oxidation of the core/shell QDs embedded in the SU-8 resist is completely avoidable. The deterministic insertion of multiple QDs or a single QD into photonic structures is demonstrated. Single photon generation is obtained and well-preserved in the nanocomposite and the polymeric structures.

3.
Nanomaterials (Basel) ; 7(5)2017 May 09.
Article in English | MEDLINE | ID: mdl-28486409

ABSTRACT

We report on the fabrication of desired magneto-photonic devices by a low one-photon absorption (LOPA) direct laser writing (DLW) technique on a photocurable nanocomposite consisting of magnetite ( Fe 3 O 4 ) nanoparticles and a commercial SU-8 photoresist. The magnetic nanocomposite was synthesized by mixing Fe 3 O 4 nanoparticles with different kinds of SU-8 photoresists. We demonstrated that the degree of dispersion of Fe 3 O 4 nanoparticles in the nanocomposite depended on the concentration of Fe 3 O 4 nanoparticles, the viscosity of SU-8 resist, and the mixing time. By tuning these parameters, the most homogeneous magnetic nanocomposite was obtained with a concentration of about 2 wt % of Fe 3 O 4 nanoparticles in SU-8 2005 photoresist for the mixing time of 20 days. The LOPA-based DLW technique was employed to fabricate on demand various magneto-photonic submicrometer structures, which are similar to those obtained without Fe 3 O 4 nanoparticles. The magneto-photonic 2D and 3D structures with sizes as small as 150 nm were created. We demonstrated the strong magnetic field responses of the magneto-photonic nanostructures and their use as micro-actuators when immersed in a liquid solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...