Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eng Life Sci ; 23(3): e202200052, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36874609

ABSTRACT

The recovery and valorization of metals and rare earth metals from wastewater are of great importance to prevent environmental pollution and recover valuable resources. Certain bacterial and fungal species are capable of removing metal ions from the environment by facilitating their reduction and precipitation. Even though the phenomenon is well documented, little is known about the mechanism. Therefore, we systematically investigated the influence of nitrogen sources, cultivation time, biomass, and protein concentration on silver reduction capacities of cell-free cultivation media (spent media) of Aspergillus niger, A. terreus, and A. oryzae. The spent medium of A. niger showed the highest silver reduction capacities with up to 15 µmol per milliliter spent medium when ammonium was used as the sole N-source. Silver ion reduction in the spent medium was not driven by enzymes and did not correlate with biomass concentration. Nearly full reduction capacity was reached after 2 days of incubation, long before the cessation of growth and onset of the stationary phase. The size of silver nanoparticles formed in the spent medium of A. niger was influenced by the nitrogen source, with silver nanoparticles formed in nitrate or ammonium-containing medium having an average diameter of 32 and 6 nm, respectively.

2.
Membranes (Basel) ; 11(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379320

ABSTRACT

Investigations were carried out to obtain different lignin monomers such as vanillin and catechol as efficiently as possible, to prevent side reactions e.g., during lignin degradation. Therefore, extraction experiments were performed to determine the influence of parameters such as initial pH in the aqueous phase, organic phases containing alcohols or solvating extractants, and monomer concentrations. Cyanex 923 (Cy923) and tri-n-butyl-phosphat (TBP) diluted in kerosene were the organic phases chosen to evaluate the transport of vanillin because of their high efficiencies (>76.8%) and suitability in membrane technologies. The most efficient vanillin transport was accomplished with Cy923, as > 90% of vanillin was transferred after 5 h. However, the permeability coefficient at carrier concentration of > 0.48 mol/L was influenced not only by the diffusion but also by the organic mixture viscosity. Thus, this concentration was used in the membrane experiment containing a mixture of vanillin and catechol in the feed phase. Catechol was transported about 7% faster to the receiving phase than vanillin, presumably due to its chemical structure. Side reactions were avoided using the current liquid membrane set-up, allowing the further industrial application of an entire process, which, e.g., recovers vanillin from enzymatic lignin conversion by membrane technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...