Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1172457, 2023.
Article in English | MEDLINE | ID: mdl-37214292

ABSTRACT

Magnetosomes are biologically-derived magnetic nanoparticles (MNPs) naturally produced by magnetotactic bacteria (MTB). Due to their distinctive characteristics, such as narrow size distribution and high biocompatibility, magnetosomes represent an attractive alternative to existing commercially-available chemically-synthesized MNPs. However, to extract magnetosomes from the bacteria, a cell disruption step is required. In this study, a systematic comparison between three disruption techniques (enzymatic treatment, probe sonication and high-pressure homogenization) was carried out to study their effect on the chain length, integrity and aggregation state of magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 cells. Experimental results revealed that all three methodologies show high cell disruption yields (>89%). Transmission electron microscopy (TEM), dynamic light scattering (DLS) and, for the first time, nano-flow cytometry (nFCM) were employed to characterize magnetosome preparations after purification. TEM and DLS showed that high-pressure homogenization resulted in optimal conservation of chain integrity, whereas enzymatic treatment caused higher chain cleavage. The data obtained suggest that nFCM is best suited to characterize single membrane-wrapped magnetosomes, which can be particularly useful for applications that require the use of individual magnetosomes. Magnetosomes were also successfully labelled (>90%) with the fluorescent CellMask™ Deep Red membrane stain and analysed by nFCM, demonstrating the promising capacity of this technique as a rapid analytical tool for magnetosome quality assurance. The results of this work contribute to the future development of a robust magnetosome production platform.

2.
J Vis Exp ; (185)2022 07 26.
Article in English | MEDLINE | ID: mdl-35969098

ABSTRACT

Single particle characterization has become increasingly relevant for research into extracellular vesicles, progressing from bulk analysis techniques and first-generation particle analysis to comprehensive multi-parameter measurements such as nano-flow cytometry (nFCM). nFCM is a form of flow cytometry that utilizes instrumentation specifically designed for nano-particle analysis, allowing for thousands of EVs to be characterized per minute both with and without the use of staining techniques. High resolution side scatter (SS) detection allows for size and concentration to be determined for all biological particles larger than 45 nm, while simultaneous fluorescence (FL) detection identifies the presence of labeled markers and targets of interest. Labeled subpopulations can then be described in quantitative units of particles/mL or as a percentage of the total particles identified by side scatter. Here, EVs derived from conditioned cell culture media (CCM) are labeled with both a lipid dye, to identify particles with a membrane, and antibodies specific for CD9, CD63, and CD81 as common EV markers. Measurements of comparison material, a concentration standard and a size standard of silica nanospheres, as well as labeled sample material are analyzed in a 1-minute analysis. The software is then used to measure the concentration and size distribution profile of all particles, independent of labeling, before determining the particles that are positive for each of the labels. Simultaneous SS and FL detection can be utilized flexibly with many different EV sources and labeling targets, both external and internal, describing EV samples in a comprehensive and quantitative manner.


Subject(s)
Extracellular Vesicles , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Flow Cytometry/methods , Silicon Dioxide , Staining and Labeling
3.
Nat Commun ; 13(1): 3460, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710644

ABSTRACT

The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.


Subject(s)
CD40 Ligand , Extracellular Vesicles , CD40 Ligand/metabolism , Extracellular Vesicles/metabolism , Immunological Synapses , Synaptic Vesicles , T-Lymphocytes
4.
J Extracell Vesicles ; 10(3): e12052, 2021 01.
Article in English | MEDLINE | ID: mdl-33473263

ABSTRACT

The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.


Subject(s)
Extracellular Vesicles , Liposomes , Particle Size , Dynamic Light Scattering/methods , Extracellular Vesicles/chemistry , Flow Cytometry/methods , Fractionation, Field Flow/methods , Liposomes/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Polystyrenes/chemistry
5.
J Extracell Vesicles ; 9(1): 1697028, 2020.
Article in English | MEDLINE | ID: mdl-31839906

ABSTRACT

Extracellular vesicles (EVs) have sparked tremendous interest owing to their prominent potential in diagnostics and therapeutics. Isolation of EVs from complex biological fluids with high purity is essential to the accurate analysis of EV cargo. Unfortunately, generally used isolation techniques do not offer good separation of EVs from non-EV contaminants. Hence, it is important to have a standardized method to characterise the properties of EV preparations, including size distribution, particle concentration, purity and phenotype. Employing a laboratory-built nano-flow cytometer (nFCM) that enables multiparameter analysis of single EVs as small as 40 nm, here we report a new benchmark to the quality and efficiency assessment of EVs isolated from plasma, one of the most difficult body fluids to work with. The performance of five widely used commercial isolation kits was examined and compared with the traditional differential ultracentrifugation (UC). Two to four orders of magnitude higher particle concentrations were observed for EV preparations from platelet-free plasma (PFP) by kits when compared with the EV preparation by UC, yet the purity was much lower. Meanwhile, the particle size distribution profiles of EV preparations by kits closely resembled those of PFP whereas the EV preparation by UC showed a broader size distribution at relatively large particle size. When these kits were used to isolate EVs from vesicle-depleted PFP (VD-PFP), comparable particle counts were obtained with their corresponding EV preparations from PFP, which confirmed again the isolation of a large quantity of non-vesicular contaminants. As CD9, CD63 and CD81 also exist in the plasma matrix, single-particle phenotyping of EVs offers distinct advantage in the validation of EVs compared with ensemble-averaged approaches, such as Western blot analysis. nFCM allows us to compare different isolation techniques without prejudice.

6.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 6): 576-81, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16699183

ABSTRACT

(+)-Epi-biotin differs from (+)-biotin in the configuration of the chiral center at atom C2. This could lead to a difference in the mode of binding of (+)-epi-biotin to streptavidin, a natural protein receptor for (+)-biotin. Diffraction data were collected to a maximum of 0.85 Angstrom resolution for structural analysis of the complex of streptavidin with a sample of (+)-epi-biotin and refinement was carried out at both 1.0 and 0.85 Angstrom resolution. The structure determination shows a superposition of two ligands in the binding site, (+)-biotin and (+)-epi-biotin. The molecules overlap in the model for the complex except for the position of S1 in the tetrahydrothiophene ring. Differences in the conformation of the ring permits binding of each molecule to streptavidin with little observable difference in the protein structures at this high resolution.


Subject(s)
Biotin/chemistry , Models, Molecular , Streptavidin/chemistry , Binding Sites , Crystallography, X-Ray , Protein Binding , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...